I am following along with the book titled: Hands-On Machine Learning with SciKit-Learn, Keras and TensorFlow by Aurelien Geron (link). In chapter 2 you get hands on with actually building an ML system using a dataset from StatLib's California Housing Prices (link).
I have been running cross validation tests using BOTH GridSearchCV and RandomSearchCV to test and see which performs better (they both perform about the same, depending on the run GridSearch will perform better than RandomSearch and vice versa). During my cross validation of the training set, all of my RMSE's come back (after about 10 folds) looking like so:
49871.10156541779 {'max_features': 6, 'n_estimators': 100} GRID SEARCH CV
49573.67188289324 {'max_features': 6, 'n_estimators': 300} GRID SEARCH CV
49759.116323927 {'max_features': 8, 'n_estimators': 100} GRID SEARCH CV
49388.93702859155 {'max_features': 8, 'n_estimators': 300} GRID SEARCH CV
49759.445071611895 {'max_features': 10, 'n_estimators': 100} GRID SEARCH CV
49517.74394767381 {'max_features': 10, 'n_estimators': 300} GRID SEARCH CV
49796.22587441326 {'max_features': 12, 'n_estimators': 100} GRID SEARCH CV
49616.61833604992 {'max_features': 12, 'n_estimators': 300} GRID SEARCH CV
49795.571075148444 {'max_features': 14, 'n_estimators': 300} GRID SEARCH CV
49790.38581725693 {'n_estimators': 100, 'max_features': 12} RANDOM SEARCH CV
49462.758078362356 {'n_estimators': 300, 'max_features': 8} RANDOM SEARCH CV
Please note that I am selecting the best results out of about 50 or so results to present here. I am using the following code to generate this:
param_grid = [{'n_estimators' : [3, 10, 30, 100, 300],
'max_features' : [2, 4, 6, 8, 10, 12, 14]},
{'bootstrap' : [False], 'n_estimators' : [3, 10, 12],
'max_features' : [2, 3, 4]}]
forest_regressor = RandomForestRegressor({'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'mse',
'max_depth': None, 'max_features': 8, 'max_leaf_nodes': None,
'max_samples': None, 'min_impurity_decrease': 0.0,
'min_impurity_split': None, 'min_samples_leaf': 1,
'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0,
'n_estimators': 300, 'n_jobs': None, 'oob_score': False,
'random_state': None, 'verbose': 0, 'warm_start': False})
grid_search = GridSearchCV(forest_regressor, param_grid, cv=10, scoring="neg_mean_squared_error",
return_train_score=True, refit=True)
grid_search.fit(Dataframe, TrainingLabels)
prediction = grid_search.predict(Dataframe)
cvres = grid_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
print(np.sqrt(-mean_score), params, "GRID SEARCH CV")
##################################################################################
#Randomized Search Cross Validation
param_grid = [{'n_estimators' : [3, 10, 30, 100, 300],
'max_features' : [2, 4, 6, 8, 10, 12, 14]},
{'bootstrap' : [False], 'n_estimators' : [3, 10, 12],
'max_features' : [2, 3, 4]}]
forest_regressor = RandomForestRegressor({'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'mse',
'max_depth': None, 'max_features': 8, 'max_leaf_nodes': None,
'max_samples': None, 'min_impurity_decrease': 0.0,
'min_impurity_split': None, 'min_samples_leaf': 1,
'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0,
'n_estimators': 300, 'n_jobs': None, 'oob_score': False,
'random_state': None, 'verbose': 0, 'warm_start': False})
rand_search = RandomizedSearchCV(forest_regressor, param_grid, cv=10, refit=True,
scoring='neg_mean_squared_error', return_train_score=True)
rand_search.fit(Dataframe, TrainingLabels)
prediction = rand_search.predict(Dataframe)
cvres = rand_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
print(np.sqrt(-mean_score), params, "RANDOM SEARCH CV")
Now, I am doing things a little differently than what the book states; my pipeline looks as such:
import pandas as pd
import numpy as np
from sklearn.impute import KNNImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.compose import make_column_transformer
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from scipy import stats
class Dataframe_Manipulation:
def __init__(self):
self.dataframe = pd.read_csv(r'C:\Users\bohayes\AppData\Local\Programs\Python\Python38\Excel and Text\housing.csv')
def Cat_Creation(self):
# Creation of an Income Category to organize the median incomes into strata (bins) to sample from
self.income_cat = self.dataframe['income_category'] = pd.cut(self.dataframe['median_income'],
bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
labels=[1, 2, 3, 4, 5])
self.rooms_per_house_cat = self.dataframe['rooms_per_house'] = self.dataframe['total_rooms']/self.dataframe['households']
self.bedrooms_per_room_cat = self.dataframe['bedrooms_per_room'] = self.dataframe['total_bedrooms']/self.dataframe['total_rooms']
self.pop_per_house = self.dataframe['pop_per_house'] = self.dataframe['population'] / self.dataframe['households']
return self.dataframe
def Fill_NA(self):
self.imputer = KNNImputer(n_neighbors=5, weights='uniform')
self.dataframe['total_bedrooms'] = self.imputer.fit_transform(self.dataframe[['total_bedrooms']])
self.dataframe['bedrooms_per_room'] = self.imputer.fit_transform(self.dataframe[['bedrooms_per_room']])
return self.dataframe
def Income_Cat_Split(self):
self.inc_cat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for self.train_index, self.test_index in self.inc_cat_split.split(self.dataframe, self.dataframe['income_category']):
self.strat_train_set = self.dataframe.loc[self.train_index].reset_index(drop=True)
self.strat_test_set = self.dataframe.loc[self.test_index].reset_index(drop=True)
# the proportion is the % of total instances and which strata they are assigned to
self.proportions = self.strat_test_set['income_category'].value_counts() / len(self.strat_test_set)
# Only pulling out training set!!!!!!!!!!!!!!!
return self.strat_train_set, self.strat_test_set
def Remove_Cats_Test(self):
self.test_labels = self.strat_test_set['median_house_value'].copy()
self.strat_test_set = self.strat_test_set.drop(['median_house_value'], axis=1)
return self.test_labels
def Remove_Cats_Training(self):
self.training_labels = self.strat_train_set['median_house_value'].copy()
self.strat_train_set = self.strat_train_set.drop(['median_house_value'], axis=1)
return self.training_labels
def Encode_Transform(self):
self.column_trans = make_column_transformer((OneHotEncoder(), ['ocean_proximity']), remainder='passthrough')
self.training_set_encoded = self.column_trans.fit_transform(self.strat_train_set)
self.test_set_encoded = self.column_trans.fit_transform(self.strat_test_set)
return self.training_set_encoded, self.test_set_encoded
def Standard_Scaler(self):
self.scaler = StandardScaler()
self.scale_training_set = self.scaler.fit(self.training_set_encoded)
self.scale_test_set = self.scaler.fit(self.test_set_encoded)
self.scaled_training_set = self.scaler.transform(self.training_set_encoded)
self.scaled_test_set = self.scaler.transform(self.test_set_encoded)
return self.scaled_training_set
def Test_Set(self):
return self.scaled_test_set
A = Dataframe_Manipulation()
B = A.Cat_Creation()
C = A.Fill_NA()
D = A.Income_Cat_Split()
TestLabels = A.Remove_Cats_Test()
TrainingLabels = A.Remove_Cats_Training()
G = A.Encode_Transform()
TrainingSet = A.Standard_Scaler()
TestSet = A.Test_Set()
The Grid and Random Searches come after this bit, however my RMSE scores come back drastically different when I test them on the TestSet, which leads me to believe that I am overfitting, however maybe the RSME's look different because I am using a smaller test set? Here you go:
19366.910530221918
19969.043158986697
Now here is the code that generates that: and it comes after I run Grid and Random Searches and fit the test labels and test set to the model:
#Final Grid Model
final_grid_model = grid_search.best_estimator_
final_grid_prediction = final_grid_model.predict(TestSet)
final_grid_mse = mean_squared_error(TestLabels, final_grid_prediction)
final_grid_rmse = np.sqrt(final_grid_mse)
print(final_grid_rmse)
###################################################################################
#Final Random Model
final_rand_model = rand_search.best_estimator_
final_rand_prediction = final_rand_model.predict(TestSet)
final_rand_mse = mean_squared_error(TestLabels, final_rand_prediction)
final_rand_rmse = np.sqrt(final_rand_mse)
print(final_rand_rmse)
Just to make sure I also did a confidence score on the model as well and these are the code and results:
#Confidence Grid Search
confidence = 0.95
squared_errors = (final_grid_prediction - TestLabels) ** 2
print(np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
loc=squared_errors.mean(),
scale=stats.sem(squared_errors))))
###################################################################################
#Confidence Random Search
confidence1 = 0.95
squared_errors1 = (final_rand_prediction - TestLabels) ** 2
print(np.sqrt(stats.t.interval(confidence1, len(squared_errors1) - 1,
loc=squared_errors1.mean(),
scale=stats.sem(squared_errors1))))
>>>[18643.4914044 20064.26363526]
[19222.30464011 20688.84660134]
Why is it that my average RMSE score on the TrainingSet is about 49,000 and that same score on the test set is averaging at about 19,000? I must be overfitting, but I am not sure how or where I am going wrong.