I have a binary cross-entropy implementation in Keras. I would like to implement the same one in LGBM as a custom loss. Now I understand LGBM of course has 'binary' objective built-in but I would like to implement this one custom-made on my own as a starter for some future enhancements.
Here is the code,
def custom_binary_loss(y_true, y_pred):
"""
Keras version of binary cross-entropy (works like charm!)
"""
# https://github.com/tensorflow/tensorflow/blob/v2.3.1/tensorflow/python/keras/backend.py#L4826
y_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())
term_0 = (1 - y_true) * K.log(1 - y_pred + K.epsilon()) # Cancels out when target is 1
term_1 = y_true * K.log(y_pred + K.epsilon()) # Cancels out when target is 0
return -K.mean(term_0 + term_1, axis=1)
# --------------------
def custom_binary_loss_lgbm(y_pred, train_data):
"""
LGBM version of binary cross-entropy
"""
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
y_true = train_data.get_label()
y_true = np.expand_dims(y_true, axis=1)
y_pred = np.expand_dims(y_pred, axis=1)
epsilon_ = 1e-7
y_pred = np.clip(y_pred, epsilon_, 1 - epsilon_)
term_0 = (1 - y_true) * np.log(1 - y_pred + epsilon_) # Cancels out when target is 1
term_1 = y_true * np.log(y_pred + epsilon_) # Cancels out when target is 0
grad = -np.mean(term_0 + term_1, axis=1)
hess = np.ones(grad.shape)
return grad, hess
But using the above my LGBM model only predicts zeros. Now my dataset is balanced and everything looks cool so what's the error here?
params = {
'objective': 'binary',
'num_iterations': 100,
'seed': 21
}
ds_train = lgb.Dataset(df_train[predictors], y, free_raw_data=False)
reg_lgbm = lgb.train(params=params, train_set=ds_train, fobj=custom_binary_loss_lgbm)
I also tried with a different hessian hess = (y_pred * (1. - y_pred)).flatten()
. Although I don't know what hessian really means it didn't work either!
list(map(lambda x: 1.0 / (1.0 + np.exp(-x)), reg_lgbm.predict(df_train[predictors])))
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, .............]