You can correlate each pipeline stage’s outputs w/its inputs. e.g. given the results of model evaluation we should be able to easily identify all the artifacts (model evaluation configuration, model specification, model parameters, training script, training data etc.) pertaining to said evaluation.
Azure Machine Learning Pipelines Referenced Article:
https://github.com/Azure/MachineLearningNotebooks/blob/4a3f8e7025334ea8c0de0bada69b031ce54c24a0/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-databricks-as-compute-target.ipynb
We have an AMLS pipeline trying to parameterize with a date string to process our pipeline in the context of old historical dates.
Here’s the code we’re using to submit the pipeline
from azureml.core.authentication import InteractiveLoginAuthentication
import requests
auth = InteractiveLoginAuthentication()
aad_token = auth.get_authentication_header()
rest_endpoint = published_pipeline.endpoint
print("You can perform HTTP POST on URL {} to trigger this pipeline".format(rest_endpoint))
# specify the param when running the pipeline
response = requests.post(rest_endpoint,
headers=aad_token,
json={"ExperimentName": "dtpred-Dock2RTEG-EX-param",
"RunSource": "SDK",
"DataPathAssignments": {"input_datapath": {"DataStoreName": "erpgen2datastore","RelativePath": "teams/PredictiveInsights/DatePrediction/2019/10/10"}},
"ParameterAssignments": {"param_inputDate": "2019/10/10"}})
run_id = response.json()["Id"]
print('Submitted pipeline run: ', run_id)