I'm looking at debris ingestion in gulls. Each gull is listed by row. Columns contain the sex(0=male, 1=female), if they ate debris (0=no, 1=yes) and if I found any number of other items in their stomach, for this problem I'd like to see if sex and presence of debris influences the number of birds with Shells in their stomach (0=no shells, 1=shells). Debris prevalence is likely overdispersed and zero-inflated, but I'm not sure that matters if I'm using it as a factor to evaluate shell prevalence. Shell prevalence might be overdispersed and zero inflated as well.
I've plotted the data and want to test whether the differences seen in the plot are significant.
But when trying to run a zero-inflated negative binomial model I get many diff errors depending on how I set it up.
library (aod)
library(MASS)
library (ggplot2)
library(gridExtra)
library(pscl)
library(boot)
library(reshape2)
mydata1 <- read.csv('D:/mp paper/analysis wkshts/stats files/FOdata.csv')
mydata1 <- within(mydata1, {
debris <- factor(debris)
sex <- factor(sex)
Shell_frags <- factor(Shell_frags)
})
summary(mydata1)
ggplot(mydata1, aes(Shell_frags, fill=debris)) +
stat_count() +
facet_grid(debris ~ sex, margins=TRUE, scales="free_y")
m1 <- zeroinfl((Shell_frags ~ sex + debris), data = mydata1, dist = "negbin", EM = TRUE)
summary(m1)
Error message:
Error in if (all(Y > 0)) stop("invalid dependent variable, minimum count is not zero") : missing value where TRUE/FALSE needed
In addition: Warning messages:
1: In model.response(mf, "numeric") :
using type = "numeric" with a factor response will be ignored
2: In Ops.factor(Y, 0) : ‘>’ not meaningful for factors
> summary(m1)
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'object' in selecting a method for function 'summary': object 'm1'
not found