I am trying to do a cross-validation of a glm model, but get an error regarding the colnames in the input. Does anyone no why?
df.t <- structure(list(hsa_miR_1271_5p = c(5.49810955587331, 2.59625048602785,
-1.18451789616878, 5.15323970237091, 0.140211440674119, 3.04813811986249
), hsa_miR_1306_5p = c(3.86825008468275, 4.11453141456941, 4.74606690723312,
4.07411857512024, 4.21025999335593, 3.34936453244035), hsa_miR_3196 = c(5.34473949644032,
-1.11507439046225, -1.18451789616878, 5.15323970237091, -1.08209121203209,
0.527829025138608), hsa_miR_4484 = c(-1.18870525729212, 2.0485452441295,
-1.18451789616878, -1.36849402655295, 0.140211440674119, 2.62754403295089
), hsa_miR_4791 = c(3.08850377258275, 3.34342021798402, 4.74606690723312,
-1.36849402655295, 2.39264491482849, 3.55905381780721)), row.names = c("1025",
"1101", "1330", "1428", "1473", "175"), class = "data.frame")
OverallStatus.discovery <- c(0L, 0L, 0L, 0L, 0L, 1L)
FML <- OverallStatus.discovery ~ hsa_miR_1306_5p + hsa_miR_3196 + hsa_miR_1271_5p +
hsa_miR_4484 + hsa_miR_4791
multifit.discovery <-glm(FML,family=binomial(), data = df.t)
library(boot)
cv.mse <- cv.glm(df.t, multifit.discovery)
Error in model.frame.default(formula = FML, data = list(hsa_miR_1271_5p = c(5.49810955587331, : variable lengths differ (found for 'hsa_miR_1306_5p')