I have timeseries with several days data. I need to find a day with maximum number of outliers and plot only this day data.
Here how I do it:
#generate sample data
Sys.setlocale("LC_ALL","English")
Values <- sample(0:100,24241, replace = T)
Values <- rpois(24241, lambda=75)
start <- as.POSIXct("2012-01-15 06:10:00")
interval <- 15
end <- start + as.difftime(4, units="days") + as.difftime(5, units = "hours")
DateTimes <- seq(from=start, by=interval, to=end)
cpu_df <- tibble(datetime = DateTimes, Value = Values)
# find and plot outliers of all days ========================================
upper_bound <- quantile(cpu_df$Value, 0.975)
outlier_ind <- which(cpu_df$Value > upper_bound)
cpu_df_susp <- cpu_df[outlier_ind, ]
alldays_plot <- ggplot(data = cpu_df, aes(x = datetime, y = Value)) +
geom_point(size = 0.9, color = "darkgreen") +
geom_point(data = cpu_df_susp, color = "red", size = 1) +
geom_hline(yintercept=upper_bound, linetype="dashed", color = "red") +
theme_bw() +
labs(x="", title = paste0("% Processor Time, _Total, Percentile: 0.975, Threshold: ", round(upper_bound,2)))
# ========== convert to xts ====================================================
suppressMessages(library(xts))
cpu_df_xts <- xts(x = cpu_df$Value, order.by = cpu_df$datetime)
days <- split(cpu_df_xts, f="days")
#========= find worst day - with biggest number of outliers
outliers_number <- 0
worstday_index <- 0
for (i in 1:(length(days))) {
upper_bound <- quantile( coredata(days[[i]]), 0.975)
outlier_ind <- which(coredata(days[[i]]) > upper_bound)
outlier_day_number <- length(outlier_ind)
if ( outlier_day_number > outliers_number
){
worstday_index <- i
outliers_number <- outlier_day_number
worst_day_outliers_ind <- outlier_ind
}
}
WorstDay <- days[[worstday_index]]
# find outliers of worst day ====================================================
worst_day_outliers <- WorstDay[worst_day_outliers_ind, ]
# convert xts back to tibble
WorstDayTibble <- tibble( datetime = index(WorstDay),
Value = coredata(WorstDay) )
outliersTibble <- tibble( datetime = index(worst_day_outliers),
Value = coredata(worst_day_outliers) )
# plot worst day ====================================================
worstDay_Plot <- ggplot(data = WorstDayTibble, aes(x = datetime, y = Value)) +
geom_point(size = 0.9, color = "darkgreen") +
geom_point(data = outliersTibble, color = "red", size = 1) +
geom_hline(yintercept=upper_bound, linetype="dashed", color = "red") +
theme_bw() +
labs(x="", title = paste0("% Processor Time, _Total, Percentile: 0.975, Threshold: ", round(upper_bound,2)))
library(ggpubr)
ggpubr::ggarrange(alldays_plot, worstDay_Plot)
Here is the result:
What I don't like in my code - to split data to days and search through them I need to convert it to xts. To plot data via ggplot2, I have to convert data back to tibble. Is it possible to avoid that double conversion and make code simplier?