I have a df that looks similar to this (shortened version, with less rows):
Time (EDT) Open High Low Close
0 02.01.2006 19:00:00 0.85224 0.85498 0.85224 0.85498
1 02.01.2006 20:00:00 0.85498 0.85577 0.85423 0.85481
2 02.01.2006 21:00:00 0.85481 0.85646 0.85434 0.85646
3 02.01.2006 22:00:00 0.85646 0.85705 0.85623 0.85651
4 02.01.2006 23:00:00 0.85643 0.85691 0.85505 0.85653
5 03.01.2006 00:00:00 0.85653 0.8569 0.85601 0.85626
6 03.01.2006 01:00:00 0.85626 0.85653 0.85524 0.8557
7 03.01.2006 02:00:00 0.85558 0.85597 0.85486 0.85597
8 03.01.2006 03:00:00 0.85597 0.85616 0.85397 0.8548
9 03.01.2006 04:00:00 0.85469 0.85495 0.8529 0.85328
10 03.01.2006 05:00:00 0.85316 0.85429 0.85222 0.85401
11 03.01.2006 06:00:00 0.85401 0.8552 0.853 0.8552
12 03.01.2006 07:00:00 0.8552 0.8555 0.85319 0.85463
13 03.01.2006 08:00:00 0.85477 0.85834 0.8545 0.85788
14 03.01.2006 09:00:00 0.85788 0.85838 0.85341 0.85416
15 03.01.2006 10:00:00 0.8542 0.8542 0.85006 0.85111
16 03.01.2006 11:00:00 0.85115 0.85411 0.85 0.85345
17 03.01.2006 12:00:00 0.85337 0.85432 0.8526 0.85413
18 03.01.2006 13:00:00 0.85413 0.85521 0.85363 0.85363
19 03.01.2006 14:00:00 0.85325 0.8561 0.85305 0.85606
20 03.01.2006 15:00:00 0.8561 0.85675 0.85578 0.85599
I need to convert the date string to datetime, then set date column as index, and resample. When I use method 1, I can't resample properly, the data how it resamples is wrong and it creates extra future dates. Let say my last date is 2018-11, I will see 2018-12 something like that.
method 1:
df['Time (EDT)'] = pd.to_datetime(df['Time (EDT)']) <---- this takes long also, because theres 90000 rows
df.set_index('Time (EDT)', inplace=True)
ohlc_dict = {'Open':'first','High':'max', 'Low':'min','Close'}
df=df.resample'4H', base=17, closed='left', label='left').agg(ohlc_dict)
result:
Time (EDT) Open High Low Close
1/1/2006 21:00 0.86332 0.86332 0.86268 0.86321
1/2/2006 1:00 0.86321 0.86438 0.86111 0.86164
1/2/2006 5:00 0.86164 0.86222 0.8585 0.86134
1/2/2006 9:00 0.86149 0.86297 0.85695 0.85793
1/2/2006 13:00 0.85801 0.85947 0.85759 0.8591
1/2/2006 17:00 0.8591 0.86034 0.85757 0.85825
1/2/2006 21:00 0.85825 0.85969 0.84377 0.84412
1/3/2006 1:00 0.84445 0.8468 0.84286 0.84642
1/3/2006 5:00 0.84659 0.8488 0.84494 0.84872
1/3/2006 9:00 0.84829 0.84915 0.84271 0.84416
1/3/2006 13:00 0.84372 0.8453 0.84346 0.84423
1/3/2006 17:00 0.84426 0.84693 0.84426 0.84516
1/3/2006 21:00 0.84523 0.8458 0.84442 0.84579
When I use method 2. It resamples properly.
method 2:
def to_datetime_obj(date_string):
datetime_obj = datetime.strptime(date_string[:], '%d.%m.%Y %H:%M:%S')
return datetime_obj
datetime_objs = None
date_list = df['Time (EDT)'].tolist()
datetime_objs=list(map(to_datetime_obj, date_list)) <--- this is faster also
df.iloc[:,:1] = datetime_objs
df.set_index('Time (EDT)', inplace=True)
ohlc_dict = {'Open':'first','High':'max', 'Low':'min','Close'}
df=df.resample'4H', base=17, closed='left', label='left').agg(ohlc_dict)
result:
Time (EDT) Open High Low Close
1/2/2006 17:00 0.85224 0.85577 0.85224 0.85481
1/2/2006 21:00 0.85481 0.85705 0.85434 0.85626
1/3/2006 1:00 0.85626 0.85653 0.8529 0.85328
1/3/2006 5:00 0.85316 0.85834 0.85222 0.85788
1/3/2006 9:00 0.85788 0.85838 0.85 0.85413
1/3/2006 13:00 0.85413 0.85675 0.85305 0.85525
1/3/2006 17:00 0.85525 0.85842 0.85502 0.85783
1/3/2006 21:00 0.85783 0.85898 0.85736 0.85774
1/4/2006 1:00 0.85774 0.85825 0.8558 0.85595
1/4/2006 5:00 0.85595 0.85867 0.85577 0.85839
1/4/2006 9:00 0.85847 0.85981 0.85586 0.8578
1/4/2006 13:00 0.85773 0.85886 0.85597 0.85653
1/4/2006 17:00 0.85653 0.85892 0.85642 0.8584
1/4/2006 21:00 0.8584 0.85863 0.85658 0.85715
1/5/2006 1:00 0.85715 0.8588 0.85641 0.85791
1/5/2006 5:00 0.85803 0.86169 0.85673 0.86065
- The df.index of method 1 and 2 are the same visually before resampling.
- They are both
pandas.core.indexes.datetimes.DatetimeIndex
- But when I compare them, they are actually different
method1_df.index != method2_df.index
Why is that? How to fix? Thanks.