Problem
I have an Android and iOS app, looking like a classic social network. I need to update UI in real time. Currently, I use a classic system of a client polling each second to a php script by HTTP. The php script bother the database every second for every client and responds, most of the time that there is no new update. If there is a new update, the php script process it and send it back to the client app.
There are 3 problems in this approach : (1) slow user experience (1 second delay each time) + high battery and data usage, (2) apache machines bothered each second by incoming HTTP request, (3) database machine bothered each second by the apaches machines (requesting if they are new stored updates in the main database).
I feel that this system could be substentially improved. For problem (1), I know a TCP connection can be "piped" to the app, but there is still problem (3) because the thread behind the socket still polls the database each second to know if they are new stored updates for their member ID.
Solution ?
I thought of a system to get rid of any activity (client, apaches and database) if there are no new updates. There would be : N apaches server on N machines, a load balancer exposed to the Internet. Behind, these apache server, connected only to local network, 1 "central" database and one "update" database, dedicated for the update system. The "update" database would store 2 tables :
1 table for the mapping between user tokens (and their member ID), and the thread ID and name of current apache machine holding the thread. One user ID may have several connection tokens, but one connection token is associated to only one unique couple (PID - machine name). Each time a user connects to the app, it would create a TCP con held by one thread (in one apache machine), and the [thread ID - machine name] would be stored in that table.
1 table to store the updates themselves. They contain all the informations needed to get up-to-date data (either in raw primitive form like string or int, or in "reference" form, telling the recipient TCP threads it needs to compute "at sending time" some params, for more complex data structures)
The system would be the following :
- (1) A user wants to send a message to another user. The app client of the sender sends an HTTP request to the app API endpoint; the load balancer forwards the request to one of the apache machines.
- (2) The apache server requests the main database to insert the "user message" row.
- (3) The apache server requests the "update" database to know if the recipient has any currently connected device.
- (4) if there is at least one connected device, insert an "update" row in the "update" database with all the informations needed, and wake up all thread associated to the recipient user ID (maybe using C signals ?).
- (5) All the thread(s) associated to the recipient user ID wake up, they look in the "update" database for new updates associated with their user ID, they process their parameters (especially if there are references params to be computed), they send them back to the recipient devices via TCP.
So my final question is : is such a system feasible, reliable and if so, do you think it can be optimal in term of database and apache machines performence ?
I'm more a front-end programmer and I'm not used to implement complex server architecture, so I wanted to have some opinions before diving into the code, especially if I missed something in my approach (storing PIDs is reliable ? Is it possible for one machine to wake up a thread in another machine through local network ? ...)
PS : I already tried Firebase cloud messaging, but the problem is that they authorize only a one dimension array to be sent with update params. When dealing with complex data structure (like a "user message"), when I receive a signal from FCM in my client app, I still need to make an extra HTTP call to my server to retrieve the new "user message" JSON payload. So, good for my apaches and databases machines (they are not bothered when there is no new updates), bad for the client app that has to send additional HTTP requests. Once again, tell me if I missed something here :)
Thanks for reading