- I'm trying to train Faster RCNN model. After training, I try to predict the result of image but the result is empty.
- My data is w: 1600, h: 800, c: 3, classes: 7, bounding boxes:(x1, y1, x2, y2)
- My model is below.
My model
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
def get_instance_segmentation_model(num_classes):
backbone = torchvision.models.vgg16(pretrained=True).features
backbone.out_channels = 512
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
output_size=7,
sampling_ratio=2)
model = FasterRCNN(backbone,
num_classes=2,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
num_classes = 2
model = get_instance_segmentation_model(num_classes)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
training
# let's train it for 10 epochs
num_epochs = 10
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, train_data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, valid_data_loader, device=device)
prediction:
prediction
[{'boxes': tensor([], device='cuda:0', size=(0, 4)),
'labels': tensor([], device='cuda:0', dtype=torch.int64),
'scores': tensor([], device='cuda:0')}]