i have a column date
in the format 1/1/15 (month / day / year) without leading zeros and 15 instead of 2015.
i tried
data = data.withColumn('date' , to_date(unix_timestamp(data['date'], 'MM-dd-yyyy').cast("timestamp")))
data.orderBy('date').show()
it gives NULL
in the date
column (maybe because of the year format; i tried with MM-dd-yy
, M-d-yy
too)
so i tried
data = data.withColumn('date' , regexp_replace('date', '15', '2015'))
data = data.withColumn('date' , regexp_replace('date', '/2015/', '-15-'))
data = data.withColumn('date' , regexp_replace('date' , '/' , '-'))
now I have the date
as 1-1-2015
and then when i tried the code from above , it shows the following error:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-39-470368900f3b> in <module>
----> 1 data.orderBy('date').show()
C:\Users\Admin\Anaconda3\lib\site-packages\pyspark\sql\dataframe.py in show(self, n, truncate, vertical)
438 """
439 if isinstance(truncate, bool) and truncate:
--> 440 print(self._jdf.showString(n, 20, vertical))
441 else:
442 print(self._jdf.showString(n, int(truncate), vertical))
C:\Users\Admin\Anaconda3\lib\site-packages\py4j\java_gateway.py in __call__(self, *args)
1303 answer = self.gateway_client.send_command(command)
1304 return_value = get_return_value(
-> 1305 answer, self.gateway_client, self.target_id, self.name)
1306
1307 for temp_arg in temp_args:
C:\Users\Admin\Anaconda3\lib\site-packages\pyspark\sql\utils.py in deco(*a, **kw)
126 def deco(*a, **kw):
127 try:
--> 128 return f(*a, **kw)
129 except py4j.protocol.Py4JJavaError as e:
130 converted = convert_exception(e.java_exception)
C:\Users\Admin\Anaconda3\lib\site-packages\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o140.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 34.0 failed 1 times, most recent failure: Lost task 1.0 in stage 34.0 (TID 54, DESKTOP-IQ36PJF, executor driver): org.apache.spark.SparkUpgradeException: You may get a different result due to the upgrading of Spark 3.0: Fail to parse '5-17-2015' in the new parser. You can set spark.sql.legacy.timeParserPolicy to LEGACY to restore the behavior before Spark 3.0, or set to CORRECTED and treat it as an invalid datetime string.
at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:150)
at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:141)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.$anonfun$parse$1(TimestampFormatter.scala:86)
at scala.runtime.java8.JFunction0$mcJ$sp.apply(JFunction0$mcJ$sp.java:23)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.parse(TimestampFormatter.scala:77)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.convert.Wrappers$IteratorWrapper.hasNext(Wrappers.scala:31)
at org.sparkproject.guava.collect.Ordering.leastOf(Ordering.java:628)
at org.apache.spark.util.collection.Utils$.takeOrdered(Utils.scala:37)
at org.apache.spark.rdd.RDD.$anonfun$takeOrdered$2(RDD.scala:1492)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:837)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:837)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1135)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
at java.base/java.lang.Thread.run(Thread.java:844)
Caused by: java.time.format.DateTimeParseException: Text '5-17-2015' could not be parsed at index 0
at java.base/java.time.format.DateTimeFormatter.parseResolved0(DateTimeFormatter.java:2046)
at java.base/java.time.format.DateTimeFormatter.parse(DateTimeFormatter.java:1874)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.$anonfun$parse$1(TimestampFormatter.scala:78)
... 24 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2008)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2007)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2007)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:973)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:973)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:973)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2239)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2188)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2177)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:775)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2194)
at org.apache.spark.rdd.RDD.$anonfun$reduce$1(RDD.scala:1094)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:388)
at org.apache.spark.rdd.RDD.reduce(RDD.scala:1076)
at org.apache.spark.rdd.RDD.$anonfun$takeOrdered$1(RDD.scala:1498)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:388)
at org.apache.spark.rdd.RDD.takeOrdered(RDD.scala:1486)
at org.apache.spark.sql.execution.TakeOrderedAndProjectExec.executeCollect(limit.scala:183)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3627)
at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2697)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3618)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2697)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2904)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:300)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:337)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:844)
Caused by: org.apache.spark.SparkUpgradeException: You may get a different result due to the upgrading of Spark 3.0: Fail to parse '5-17-2015' in the new parser. You can set spark.sql.legacy.timeParserPolicy to LEGACY to restore the behavior before Spark 3.0, or set to CORRECTED and treat it as an invalid datetime string.
at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:150)
at org.apache.spark.sql.catalyst.util.DateTimeFormatterHelper$$anonfun$checkParsedDiff$1.applyOrElse(DateTimeFormatterHelper.scala:141)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.$anonfun$parse$1(TimestampFormatter.scala:86)
at scala.runtime.java8.JFunction0$mcJ$sp.apply(JFunction0$mcJ$sp.java:23)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.parse(TimestampFormatter.scala:77)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.convert.Wrappers$IteratorWrapper.hasNext(Wrappers.scala:31)
at org.sparkproject.guava.collect.Ordering.leastOf(Ordering.java:628)
at org.apache.spark.util.collection.Utils$.takeOrdered(Utils.scala:37)
at org.apache.spark.rdd.RDD.$anonfun$takeOrdered$2(RDD.scala:1492)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:837)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:837)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1135)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
... 1 more
Caused by: java.time.format.DateTimeParseException: Text '5-17-2015' could not be parsed at index 0
at java.base/java.time.format.DateTimeFormatter.parseResolved0(DateTimeFormatter.java:2046)
at java.base/java.time.format.DateTimeFormatter.parse(DateTimeFormatter.java:1874)
at org.apache.spark.sql.catalyst.util.Iso8601TimestampFormatter.$anonfun$parse$1(TimestampFormatter.scala:78)
... 24 more
any help regarding this would be helpful!!!
thanks !