I have been trying to compute text similarity such that it'd be between 0 and 1, seen as a probability. The two text are encoded in two vectors, that are a bunch of numbers between [-1, 1]. So as two vectors are given, it seems plausible to use cosine similarity to obtain the vector similarity, but the output value of cosine is in between -1 and 1. So, I'm wondering if there's a method that either: 1) gives similarity between [0,1], or 2) transfer the cosine similarity to [0,1] distribution. Any ideas?
P.S. as I was so much working with cosine similarity, I saw that some suggest transferring the cosine distance to probability, or some suggested that every value between [-1, 0] should be mapped to 0, while keeping values between [0,1] as they are. Honestly, none of the methods makes sense to me, and I think they both mis-change the concept of similarity. So I'm wondering if any elegant method is out there to serve this functionality.