0

I'm not looking for a specific line a code - just built in functions or common packages that may help me do the following. Basically, something like, write up some code and use this function. I'm stuck on how to actually optimize - should I use SGD?

I have two variables, X, Y. I want to separate Y into 4 groups so that the L2, that is $(Xji | Yi - mean(Xji) | Yi)^2$ is minimized subject to the constraint that there are at least n observations in each group.

How would one go about solving this? I'd imagine you can't do this with the optim function? Basically the algo needs to move 3 values around (there are 3 cutoff points for Y) until L2 is minimized subject to n being a certain size.

Thanks

1 Answers1

0

You could try optim and simply add a penalty if the constraints are not satisfied: since you minimise, add zero if all constraints are okay; otherwise a positive number.

If that does not work, since you only look for three cutoff points, I'd probably try a grid search, i.e. compute the objective function for different levels of the cutoff point; throw away those that violate the constraints, and then keep the best solution.

Enrico Schumann
  • 1,278
  • 7
  • 8