1

Can anyone help me out with the coq syntax for the following proof:

~ (exists x:D, ~ R x) |- (forall y:D, R y)

  • You already got an answer to a very similar question at https://stackoverflow.com/questions/64742081/predicate-logic-in-coq; does that not also solve this problem for you? – tripleee Nov 10 '20 at 06:39

1 Answers1

1

First you have to define D and R, either by having it defined beforehand or by having it in scope by a quantifier. And entailment is usually modeled by Coq implication (->).

This would give the following

forall (D : Prop) (R : D -> Prop), ~ (exists x:D, ~ R x) -> (forall y:D, R y).
Pedro Abreu
  • 142
  • 5