I am trying to implement the algorithm of GMRES with right-preconditioner P for solving the linear system Ax = b . The code is running without error; however, it pops into unprecise result for me because the error I have is very large. For the GMRES method (without preconditioning matrix - remove P in the algorithm), the error I get is around 1e^{-12} and it converges with the same matrix.
import numpy as np
from scipy import sparse
import matplotlib.pyplot as plt
from scipy.linalg import norm as norm
import scipy.sparse as sp
from scipy.sparse import diags
"""The program is to split the matrix into D-diagonal; L: strictly lower matrix; U strictly upper matrix
satisfying: A = D - L - U """
def splitMat(A):
n,m = A.shape
if (n == m):
diagval = np.diag(A)
D = diags(diagval,0).toarray()
L = (-1)*np.tril(A,-1)
U = (-1)*np.triu(A,1)
else:
print("A needs to be a square matrix")
return (L,D,U)
"""Preconditioned Matrix for symmetric successive over-relaxation (SSOR): """
def P_SSOR(A,w):
## Split up matrix A:
L,D,U = splitMat(A)
Comp1 = (D - w*U)
Comp2 = (D - w*L)
Comp1inv = np.linalg.inv(Comp1)
Comp2inv = np.linalg.inv(Comp2)
P = w*(2-w)*np.matmul(Comp1inv, np.matmul(D,Comp2inv))
return P
"""GMRES_SSOR using right preconditioning P:
A - matrix of linear system Ax = b
x0 - initial guess
tol - tolerance
maxit - maximum iteration """
def myGMRES_SSOR(A,x0, b, tol, maxit):
matrixSize = A.shape[0]
e = np.zeros((maxit+1,1))
rr = 1
rstart = 2
X = x0
w = 1.9 ## in ssor
P = P_SSOR(A,w) ### preconditioned matrix
### Starting the GMRES ####
for rs in range(0,rstart+1):
### first check the residual:
if rr<tol:
break
else:
r0 = (b-A.dot(x0))
rho = norm(r0)
e[0] = rho
H = np.zeros((maxit+1,maxit))
Qcol = np.zeros((matrixSize, maxit+1))
Qcol[:,0:1] = r0/rho
for k in range(1, maxit+1):
### Arnodi procedure ##
Qcol[:,k] =np.matmul(np.matmul(A,P), Qcol[:,k-1]) ### This step applies P here:
for j in range(0,k):
H[j,k-1] = np.dot(np.transpose(Qcol[:,k]),Qcol[:,j])
Qcol[:,k] = Qcol[:,k] - (np.dot(H[j,k-1], Qcol[:,j]))
H[k,k-1] =norm(Qcol[:,k])
Qcol[:,k] = Qcol[:,k]/H[k,k-1]
### QR decomposition step ###
n = k
Q = np.zeros((n+1, n))
R = np.zeros((n, n))
R[0, 0] = norm(H[0:n+2, 0])
Q[:, 0] = H[0:n+1, 0] / R[0,0]
for j in range (0, n+1):
t = H[0:n+1, j-1]
for i in range (0, j-1):
R[i, j-1] = np.dot(Q[:, i], t)
t = t - np.dot(R[i, j-1], Q[:, i])
R[j-1, j-1] = norm(t)
Q[:, j-1] = t / R[j-1, j-1]
g = np.dot(np.transpose(Q), e[0:k+1])
Y = np.dot(np.linalg.inv(R), g)
Res= e[0:n] - np.dot(H[0:n, 0:n], Y[0:n])
rr = norm(Res)
#### second check on the residual ###
if rr < tol:
break
#### Updating the solution with the preconditioned matrix ####
X = X + np.matmul(np.matmul(P,Qcol[:, 0:k]), Y) ### This steps applies P here:
return X
######
A = np.random.rand(100,100)
x = np.random.rand(100,1)
b = np.matmul(A,x)
x0 = np.zeros((100,1))
maxit = 100
tol = 0.00001
x = myGMRES_SSOR(A,x0,b,tol,maxit)
res = b - np.matmul(A,x)
print(norm(res))
print("Solution with gmres\n", np.matmul(A,x))
print("---------------------------------------")
print("b matrix:", b)
I hope anyone could help me figure out this!!!