0

I have very big, legacy file with ~5000 columns and very big amount of record. Many columns are named like a_1,a_2,...,a_200 etc.

I want to concatenate number of columns into struct (for better data manipulation later), so instead:

_| a_1 | a_2 | a_3 |...
0| true | false | true |...
1| false | true | false |...

I would like to have struct a { 1: true, 2: false, ... 200: true } .

How to transform it using Python, probably Panda's? Columns have always same prefix, like a_, b_... etc.

Greeetings

Aylard
  • 33
  • 5

1 Answers1

1

Considering a CSV that look like this

_|a_1|a_2|a_3|a_4|b_1|b_2|b_3|b_4
0|true|false|true|false|true|false|true|false
1|false|true|false|true|false|true|false|true

Here's how you could to it in python with just the standard library:

import csv

with open("data.csv", newline='') as csvfile:
    reader = csv.reader(csvfile, delimiter='|')
    
    headers = next(reader) # The first line is the table columns
    
    # let's extract the tuples (letter, number) from the table columns
    dataranks = [tuple(x.split("_")) for x in headers[1:]] # dataranks = [('a', '1'), ('a', '2'), ('a', '3'), ('a', '4'), ('b', '1'), ('b', '2'), ('b', '3'), ('b', '4')

    joined_data = []

    for row in reader:
    
        # for each row, let's make a new dictionary
        aggregate = {}
    
        # for each value in the row, let's associate it to it's (letter, number) column data tuple
        for value, ranks in zip(row[1:], dataranks):
    
            # for each letter, let's use a nested dict for the number values
            if ranks[0] not in aggregate:
                aggregate[ranks[0]] = {}

            # just need to fill the dict now
            aggregate[ranks[0]][ranks[1]] = value

        # and add it to our list.
        joined_data.append(aggregate)
    
    print(joined_data)

The content of joined_data would be:

[{'a': {'1': 'true', '2': 'false', '3': 'true', '4': 'false'},
  'b': {'1': 'true', '2': 'false', '3': 'true', '4': 'false'}},
 {'a': {'1': 'false', '2': 'true', '3': 'false', '4': 'true'},
  'b': {'1': 'false', '2': 'true', '3': 'false', '4': 'true'}}]
Arwalk
  • 384
  • 2
  • 8