I have the following data
Species <- c(rep('A', 47), rep('B', 23))
Value<- c(3.8711, 3.6961, 3.9984, 3.8641, 4.0863, 4.0531, 3.9164, 3.8420, 3.7023, 3.9764, 4.0504, 4.2305,
4.1365, 4.1230, 3.9840, 3.9297, 3.9945, 4.0057, 4.2313, 3.7135, 4.3070, 3.6123, 4.0383, 3.9151,
4.0561, 4.0430, 3.9178, 4.0980, 3.8557, 4.0766, 4.3301, 3.9102, 4.2516, 4.3453, 4.3008, 4.0020,
3.9336, 3.5693, 4.0475, 3.8697, 4.1418, 4.0914, 4.2086, 4.1344, 4.2734, 3.6387, 2.4088, 3.8016,
3.7439, 3.8328, 4.0293, 3.9398, 3.9104, 3.9008, 3.7805, 3.8668, 3.9254, 3.7980, 3.7766, 3.7275,
3.8680, 3.6597, 3.7348, 3.7357, 3.9617, 3.8238, 3.8211, 3.4176, 3.7910, 4.0617)
D<-data.frame(Species,Value)
I have the two species A and B and want to find out which is the best cutoffpoint for value to determine the species.
I found the following question:
R: Determine the threshold that maximally separates two groups based on a continuous variable?
and followed the accepted answer to find the best value with the dose.p
function from the MASS package. I have several similar values and it worked for them, but not for the one given above (which is also the reason why i needed to include all 70 observations here).
D$Species_b<-ifelse(D$Species=="A",0,1)
my.glm<-glm(Species_b~Value, data = D, family = binomial)
dose.p(my.glm,p=0.5)
gives me 3.633957 as threshold:
Dose SE
p = 0.5: 3.633957 0.1755291
this results in 45 correct assignments. however, if I look at the data, it is obvious that this is not the best value. By trial and error I found that 3.8 gives me 50 correct assignments, which is obviously better.
Why does the function work for other values, but not for this one? Am I missing an obvious mistake? Or is there maybe a different/ better approach to solving my problem? I have several values I need to do this for, so I really do not want to just randomly test values until I find the best one.
Any help would be greatly appreciated.