i have a forward function in allenNlp given by :
def forward(self, input_tokens, output_tokens):
'''
This is the main process of the Model where the actual computation happens.
Each Instance is fed to the forward method.
It takes dicts of tensors as input, with same keys as the fields in your Instance (input_tokens, output_tokens)
It outputs the results of predicted tokens and the evaluation metrics as a dictionary.
'''
mask = get_text_field_mask(input_tokens)
embeddings = self.embedder(input_tokens)
rnn_hidden = self.rnn(embeddings, mask)
out_logits = self.hidden2out(rnn_hidden)
loss = sequence_cross_entropy_with_logits(out_logits, output_tokens['tokens'], mask)
return {'loss': loss}
the out_logits variable contains probabilities of tokens, how to dispaly these tokens. the outlogits gives :
array([[ 0.02416356, 0.0195566 , -0.03279119, 0.057118 , 0.05091334,
-0.01906729, -0.05311333, 0.04695245, 0.06872341, 0.05173637,
-0.03523348, -0.00537474, -0.03946163, -0.05817827, -0.04316377,
-0.06042208, 0.01190596, 0.00574979, 0.01183304, 0.02330608,
0.04587644, 0.02319966, 0.0020873 , 0.03781978, -0.03975108,
-0.0131919 , 0.00393738, 0.04785313, 0.00159995, 0.05751844,
0.05420169, -0.01404533, -0.02716331, -0.03871592, 0.00949999,
-0.02924301, 0.03504215, 0.00397302, -0.0305252 , -0.00228448,
0.04034173, 0.01458408],
[ 0.02050283, 0.0204745 , -0.03081856, 0.06295916, 0.04601778,
-0.0167818 , -0.05653084, 0.05017883, 0.07212739, 0.06197165,
-0.03590995, -0.01142827, -0.03807197, -0.05942211, -0.0375165 ,
-0.06769539, 0.01200251, 0.01012686, 0.01514241, 0.01875677,
0.04499928, 0.02748671, 0.0012517 , 0.04062563, -0.04049949,
-0.01986902, 0.00630998, 0.05092276, 0.00276728, 0.05341531,
0.05047017, -0.01111878, -0.03038253, -0.04320357, 0.01768938,
-0.03470382, 0.03567442, 0.00776757, -0.02703476, -0.00392571,
0.04700187, 0.01671317]] dtype=float32)}
i want to convert the last array to token ?