Thanks very much for this post, and for having followed it up. I have based myself liberally on your vectorisation in order to give it another speed boost (at least with the data I'm working with)!
I'm working with image correlation, and therefore I to interpolate many sets of different coordinates in the same input_array.
Unfortunately I have made it a little more complicated, but if I can explain what I have done, the extra complication should a) justify itself and b) become clear. Your last line ( output = ) still requires a fair amount of looking up in non-sequential places in the input_array, making it relatively slow.
Suppose my 3D data is NxMxP long. I have decided to do the following thing: If I can get an ( 8 x (NxMxP) ) matrix of pre-computed greyvalues for a point and its nearest neighbours, and I can also calculate a ( (NxMxP) X 8 ) matrix of coefficients ( your first coefficient in the example above is (x-1)(y-1)(z-1) ) then I can just multiply then together and be home free!
A good bonus for me is that I can precalculate the grey matrix, and recycle it!
Here is a sample bit of code (pasted from two different functions, so might not work out of the box, but should serve as a good source of inspiration):
def trilinear_interpolator_speedup( input_array, coords ):
input_array_precut_2x2x2 = numpy.zeros( (input_array.shape[0]-1, input_array.shape[1]-1, input_array.shape[2]-1, 8 ), dtype=DATA_DTYPE )
input_array_precut_2x2x2[ :, :, :, 0 ] = input_array[ 0:new_dimension-1, 0:new_dimension-1, 0:new_dimension-1 ]
input_array_precut_2x2x2[ :, :, :, 1 ] = input_array[ 1:new_dimension , 0:new_dimension-1, 0:new_dimension-1 ]
input_array_precut_2x2x2[ :, :, :, 2 ] = input_array[ 0:new_dimension-1, 1:new_dimension , 0:new_dimension-1 ]
input_array_precut_2x2x2[ :, :, :, 3 ] = input_array[ 0:new_dimension-1, 0:new_dimension-1, 1:new_dimension ]
input_array_precut_2x2x2[ :, :, :, 4 ] = input_array[ 1:new_dimension , 0:new_dimension-1, 1:new_dimension ]
input_array_precut_2x2x2[ :, :, :, 5 ] = input_array[ 0:new_dimension-1, 1:new_dimension , 1:new_dimension ]
input_array_precut_2x2x2[ :, :, :, 6 ] = input_array[ 1:new_dimension , 1:new_dimension , 0:new_dimension-1 ]
input_array_precut_2x2x2[ :, :, :, 7 ] = input_array[ 1:new_dimension , 1:new_dimension , 1:new_dimension ]
# adapted from from http://stackoverflow.com/questions/6427276/3d-interpolation-of-numpy-arrays-without-scipy
# 2012.03.02 - heavy modifications, to vectorise the final calculation... it is now superfast.
# - the checks are now removed in order to go faster...
# IMPORTANT: Input array is a pre-split, 8xNxMxO array.
# input coords could contain indexes at non-integer values (it's kind of the idea), whereas the coords_0 and coords_1 are integer values.
if coords.max() > min(input_array.shape[0:3])-1 or coords.min() < 0:
# do some checks to bring back the extremeties
# Could check each parameter in x y and z separately, but I know I get cubic data...
coords[numpy.where(coords>min(input_array.shape[0:3])-1)] = min(input_array.shape[0:3])-1
coords[numpy.where(coords<0 )] = 0
# for NxNxN data, coords[0].shape = N^3
output_array = numpy.zeros( coords[0].shape, dtype=DATA_DTYPE )
# a big array to hold all the coefficients for the trilinear interpolation
all_coeffs = numpy.zeros( (8,coords.shape[1]), dtype=DATA_DTYPE )
# the "floored" coordinates x, y, z
coords_0 = coords.astype(numpy.integer)
# all the above + 1 - these define the top left and bottom right (highest and lowest coordinates)
coords_1 = coords_0 + 1
# make the input coordinates "local"
coords = coords - coords_0
# Calculate one minus these values, in order to be able to do a one-shot calculation
# of the coefficients.
one_minus_coords = 1 - coords
# calculate those coefficients.
all_coeffs[0] = (one_minus_coords[0])*(one_minus_coords[1])*(one_minus_coords[2])
all_coeffs[1] = (coords[0]) *(one_minus_coords[1])*(one_minus_coords[2])
all_coeffs[2] = (one_minus_coords[0])* (coords[1]) *(one_minus_coords[2])
all_coeffs[3] = (one_minus_coords[0])*(one_minus_coords[1])* (coords[2])
all_coeffs[4] = (coords[0]) *(one_minus_coords[1])* (coords[2])
all_coeffs[5] = (one_minus_coords[0])* (coords[1]) * (coords[2])
all_coeffs[6] = (coords[0]) * (coords[1]) *(one_minus_coords[2])
all_coeffs[7] = (coords[0]) * (coords[1]) * (coords[2])
# multiply 8 greyscale values * 8 coefficients, and sum them across the "8 coefficients" direction
output_array = ( input_array[ coords_0[0], coords_0[1], coords_0[2] ].T * all_coeffs ).sum( axis=0 )
# and return it...
return output_array
I didn't split x y and z coordinates as above because it didn't seem that useful to remerge them afterwards. There might be something in the above code which assumed cubic data (N=M=P) but I don't think so...
Let me know what you think!