Given:
L
(hallway length)
- a list of N valid positions to place a meter (
p_0
... p_N-1
) of radius 4.7
You can determine in O(N) either a valid and minimal ("good") covering of the whole hallway or a proof that no such covering exists given the constraints as follows (pseudo-code):
// total = total length;
// start = current starting position, initially 0
// possible = list of possible meter positions
// placed = list of (optimal) meter placements, initially empty
boolean solve(float total, float start, List<Float> possible, List<Float> placed):
if (total-start <= 0):
return true; // problem solved with no additional meters - woo!
else:
Float next = extractFurthestWithinRange(start, possible, 4.7);
if (next == null):
return false; // no way to cover end of hall: report failure
else:
placed.add(next); // placement decided
return solve(total, next + 4.7, possible, placed);
Where extractFurthestWithinRange(float start, List<Float> candidates, float range)
returns null
if there are no candidates
within range
of start
, or returns the last position p
in candidates
such that p <= start + range
-- and also removes p
, and all candidates c
such that p >= c
.
The key here is that, by always choosing to place a meter in the next position that a) leaves no gaps and b) is furthest from the previously-placed position we are simultaneously creating a valid covering (= no gaps) and an optimal covering (= no possible valid covering could have used less meters - because our gaps are already as wide as possible). At each iteration, we either completely solve the problem, or take a greedy bite to reduce it to a (guaranteed) smaller problem.
Note that there can be other optimal coverings with different meter positions, but they will use the exact same number of meters as those returned from this pseudo-code. For example, if you adapt the code to start from the end of the hallway instead of from the start, the covering would still be good, but the gaps could be rearranged. Indeed, if you need the lexicographically minimal optimal covering, you should use the adapted algorithm that places meters starting from the end:
// remaining = length (starts at hallway length)
// possible = positions to place meters at, starting by closest to end of hallway
// placed = positions where meters have been placed
boolean solve(float remaining, List<Float> possible, Queue<Float> placed):
if (remaining <= 0):
return true; // problem solved with no additional meters - woo!
else:
// extracts points p up to and including p such that p >= remaining - range
Float next = extractFurthestWithinRange2(remaining, possible, 4.7);
if (next == null):
return false; // no way to cover start of hall: report failure
else:
placed.add(next); // placement decided
return solve(next - 4.7, possible, placed);