I'm trying to read a lot of avro files into a spark dataframe. They all share the same s3 filepath prefix, so initially I was running something like:
path = "s3a://bucketname/data-files"
df = spark.read.format("avro").load(path)
which was successfully identifying all the files.
The individual files are something like:
"s3a://bucketname/data-files/timestamp=20201007123000/id=update_account/0324345431234.avro"
Upon attempting to manipulate the data, the code kept errorring out, with a message that one of the files was not an Avro data file. The actual error message received is: org.apache.spark.SparkException: Job aborted due to stage failure: Task 62476 in stage 44102.0 failed 4 times, most recent failure: Lost task 62476.3 in stage 44102.0 (TID 267428, 10.96.134.227, executor 9): java.io.IOException: Not an Avro data file
.
To circumvent the problem, I was able to get the explicit filepaths of the avro files I'm interested in. After putting them in a list (file_list)
, I was successfully able to run spark.read.format("avro").load(file_list)
.
The issue now is this - I'm interested in adding a number of fields to the dataframe that are part of the filepath (ie. the timestamp and the id from the example above).
While using just the bucket and prefix filepath to find the files (approach #1), these fields were automatically appended to the resulting dataframe. With the explicit filepaths, I don't get that advantage.
I'm wondering if there's a way to include these columns while using spark to read the files.
Sequentially processing the files would look something like:
for file in file_list:
df = spark.read.format("avro").load(file)
id, timestamp = parse_filename(file)
df = df.withColumn("id", lit(id))\
.withColumn("timestamp", lit(timestamp))
but there are over 500k files and this would take an eternity.
I'm new to Spark, so any help would be much appreciated, thanks!