Here is my code. I'm maximizing an expression abs(expr1) given the constraint abs(expr1)=abs(expr2).
import numpy as np
from gekko import GEKKO
#init
m = GEKKO(remote=False)
x2,x3,x4,x5,x6,x7,x8 = [m.Var(lb=-2*np.pi, ub=2*np.pi) for i in range(7)]
#constraint
m.Equation((1/8)*m.abs(m.cos((1/2)*x6)*(m.sin(x2)*m.sin(x4)*m.sin((1/2)*x7)*((-4)*m.cos(x3)*m.cos((1/2)*x5)*m.cos(x8)+(3+m.cos(x5))*m.sin(x3)*m.sin(x8))+m.cos(x2)*m.cos((1/2)*x7)*m.sin((1/2)*x4)*(8*m.cos(x3)*m.cos(x5)*m.cos(x8)+(-1)*(5*m.cos((1/2)*x5)+3*m.cos((3/2)*x5))*m.sin(x3)*m.sin(x8)))) == (1/8)*m.abs(m.sin((1/2)*x6)*(4*m.cos(x3)*m.cos(x8)*(m.cos((1/2)*x5)*m.cos((1/2)*x7)*m.sin(x2)*m.sin(x4)+2*m.cos(x2)*m.cos(x5)*m.sin((1/2)*x4)*m.sin((1/2)*x7))+(-1)*m.sin(x3)*((3+m.cos(x5))*m.cos((1/2)*x7)*m.sin(x2)*m.sin(x4)+m.cos(x2)*(5*m.cos((1/2)*x5)+3*m.cos((3/2)*x5))*m.sin((1/2)*x4)*m.sin((1/2)*x7))*m.sin(x8))))
#objective
m.Obj(-((1/8)*m.abs(m.cos((1/2)*x6)*(m.sin(x2)*m.sin(x4)*m.sin((1/2)*x7)*((-4)*m.cos(x3)*m.cos((1/2)*x5)*m.cos(x8)+(3+m.cos(x5))*m.sin(x3)*m.sin(x8))+m.cos(x2)*m.cos((1/2)*x7)*m.sin((1/2)*x4)*(8*m.cos(x3)*m.cos(x5)*m.cos(x8)+(-1)*(5*m.cos((1/2)*x5)+3*m.cos((3/2)*x5))*m.sin(x3)*m.sin(x8))))))
#Set global options
m.options.IMODE = 3
#execute
m.solve()
#output
print('')
print('Results')
print('x2: ' + str(x2.value))
print('x3: ' + str(x3.value))
print('x4: ' + str(x4.value))
print('x5: ' + str(x5.value))
print('x6: ' + str(x6.value))
print('x7: ' + str(x7.value))
print('x8: ' + str(x8.value))
The solution I get is all x_i=0 which is a valid solution but not the best one. For example
x2,x3,x4,x5,x6,x7,x8 = 0.9046, 1.9540, 1.8090, 0, 1.8090, 6.2832, 4.3291
satisfies the constraint (up to the 5th decimal place) and the objectives reaches -0.3003 (which is still not the best but it is an example). I tried to play with the tolerance options but to no avail. Note that if I remove the equality constraint the objective properly reaches the maximal value -1.
Why does the solver get stuck with the zero solution?