You can use map()
to return your input twice:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, MaxPool2D, Conv2DTranspose, Reshape
from functools import partial
(xtrain, _), (xtest, _) = tf.keras.datasets.mnist.load_data()
ds = tf.data.Dataset.from_tensor_slices(
tf.expand_dims(tf.concat([xtrain, xtest], axis=0), axis=-1))
ds = ds.take(int(1e4)).batch(4).map(lambda x: (x/255, x/255))
custom_convolution = partial(Conv2D, kernel_size=(3, 3),
strides=(1, 1),
activation='relu',
padding='same')
custom_pooling = partial(MaxPool2D, pool_size=(2, 2))
conv_encoder = Sequential([
custom_convolution(filters=16, input_shape=(28, 28, 1)),
custom_pooling(),
custom_convolution(filters=32),
custom_pooling(),
custom_convolution(filters=64),
custom_pooling()
])
# conv_encoder(next(iter(ds))[0].numpy().astype(float)).shape
custom_transpose = partial(Conv2DTranspose,
padding='same',
kernel_size=(3, 3),
activation='relu',
strides=(2, 2))
conv_decoder = Sequential([
custom_transpose(filters=32, input_shape=(3, 3, 64), padding='valid'),
custom_transpose(filters=16),
custom_transpose(filters=1, activation='sigmoid'),
Reshape(target_shape=[28, 28, 1])
])
conv_autoencoder = Sequential([
conv_encoder,
conv_decoder
])
conv_autoencoder.compile(loss='binary_crossentropy', optimizer='adam')
history = conv_autoencoder.fit(ds)
2436/2500 [============================>.] - ETA: 0s - loss: 0.1282
2446/2500 [============================>.] - ETA: 0s - loss: 0.1280
2456/2500 [============================>.] - ETA: 0s - loss: 0.1279
2466/2500 [============================>.] - ETA: 0s - loss: 0.1278
2476/2500 [============================>.] - ETA: 0s - loss: 0.1277
2487/2500 [============================>.] - ETA: 0s - loss: 0.1275
2497/2500 [============================>.] - ETA: 0s - loss: 0.1274
2500/2500 [==============================] - 14s 6ms/step - loss: 0.1273