I have been tweaking and reworking my code to test an AABB against a triangle and I am unsure what I am doing wrong. I am using separating axis theorem as I believe this is the best and only way used to detect collisions between an AABB and Triangle (correct me if I am wrong or if there is a better/faster method). Currently it does not detect anything when a collision happens.
The code is relatively small, calling isAABBIntersectingTriangle every frame, hopefully someone who knows about math or the algorithm can help me out. The function takes in a bounding box min and max as two 3D vectors(glm::vec3) and the 3 of the triangles vertices (tri1, tri2, tri3) as glm::vec3s. These coordinates are both in world space (AABB coords translates by the position and scale only, triangle translated by position rotation and scale)
bool SATTriangleAABBCheck(glm::vec3 axis, glm::vec3 bboxMin, glm::vec3 bboxMax, glm::vec3 tri1, glm::vec3 tri2, glm::vec3 tri3)
{
//Dot triangle vertices
float triVert1 = glm::dot(axis, tri1);
float triVert2 = glm::dot(axis, tri2);
float triVert3 = glm::dot(axis, tri3);
float triMin = glm::min(glm::min(triVert1, triVert2), triVert3);
float triMax = glm::max(glm::max(triVert1, triVert2), triVert3);
//Dot cube vertices
float v1 = glm::dot(axis, glm::vec3(bboxMin.x, bboxMin.y, bboxMin.z));
float v2 = glm::dot(axis, glm::vec3(bboxMax.x, bboxMax.y, bboxMax.z));
float v3 = glm::dot(axis, glm::vec3(bboxMax.x, bboxMax.y, bboxMin.z));
float v4 = glm::dot(axis, glm::vec3(bboxMax.x, bboxMin.y, bboxMax.z));
float v5 = glm::dot(axis, glm::vec3(bboxMax.x, bboxMin.y, bboxMin.z));
float v6 = glm::dot(axis, glm::vec3(bboxMin.x, bboxMax.y, bboxMax.z));
float v7 = glm::dot(axis, glm::vec3(bboxMin.x, bboxMin.y, bboxMax.z));
float v8 = glm::dot(axis, glm::vec3(bboxMin.x, bboxMax.y, bboxMin.z));
float aabbMin = glm::min(glm::min(glm::min(glm::min(glm::min(glm::min(glm::min(v1, v2), v3), v4), v5), v6), v7) ,v8);
float aabbMax = glm::max(glm::max(glm::max(glm::max(glm::max(glm::max(glm::max(v1, v2), v3), v4), v5), v6), v7), v8);
if ((triMin < aabbMax && triMin > aabbMin) || (triMax < aabbMax && triMax > aabbMin))
return true;
if ((aabbMin < triMax && aabbMin > triMin) || (aabbMax < triMax && aabbMax > triMin))
return true;
return false;
}
glm::vec3 CalcSurfaceNormal(glm::vec3 tri1, glm::vec3 tri2, glm::vec3 tri3)
{
glm::vec3 u = tri2 - tri1;
glm::vec3 v = tri3 - tri1;
glm::vec3 nrmcross = glm::normalize(glm::cross(u, v));
return nrmcross;
}
bool isAABBIntersectingTriangle(glm::vec3 bboxMin, glm::vec3 bboxMax, glm::vec3 tri1, glm::vec3 tri2, glm::vec3 tri3)
{
//AABB face normals
glm::vec3 axis1(1, 0, 0);
glm::vec3 axis2(0, 1, 0);
glm::vec3 axis3(0, 0, 1);
//Triangle face normal
glm::vec3 axis4 = CalcSurfaceNormal(tri1, tri2, tri3);
//Edge normals
glm::vec3 e1 = tri2 - tri1;
glm::vec3 e2 = tri3 - tri1;
glm::vec3 e3 = tri3 - tri2;
glm::vec3 e4 = glm::vec3(bboxMax.x, bboxMax.y, bboxMax.z) - glm::vec3(bboxMin.x, bboxMax.y, bboxMax.z);
glm::vec3 e5 = glm::vec3(bboxMax.x, bboxMax.y, bboxMax.z) - glm::vec3(bboxMax.x, bboxMin.y, bboxMax.z);
glm::vec3 e6 = glm::vec3(bboxMax.x, bboxMax.y, bboxMax.z) - glm::vec3(bboxMax.x, bboxMax.y, bboxMin.z);
//Cross products of each edge
glm::vec3 axis5 = glm::normalize(glm::cross(e1, e4));
glm::vec3 axis6 = glm::normalize(glm::cross(e1, e5));
glm::vec3 axis7 = glm::normalize(glm::cross(e1, e6));
glm::vec3 axis8 = glm::normalize(glm::cross(e2, e4));
glm::vec3 axis9 = glm::normalize(glm::cross(e2, e5));
glm::vec3 axis10 = glm::normalize(glm::cross(e2, e6));
glm::vec3 axis11 = glm::normalize(glm::cross(e3, e4));
glm::vec3 axis12 = glm::normalize(glm::cross(e3, e5));
glm::vec3 axis13 = glm::normalize(glm::cross(e3, e6));
//If no overlap on all axes
if (!SATTriangleAABBCheck(axis1, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis2, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis3, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis4, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis5, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis6, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis7, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis8, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis9, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis10, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis11, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis12, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
if (!SATTriangleAABBCheck(axis13, bboxMin, bboxMax, tri1, tri2, tri3)) return false;
return true;
}
Also here is the code in the main loop that calculates the world position of the triangle and then calls the function, I don't believe anything is wrong here as it's probably been looked over the most:
glm::vec3 tri1 = glm::vec3(entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[0]].position.x * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[0]].position.y * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[0]].position.z * entities[0]->scale);
glm::vec3 tri2 = glm::vec3(entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[1]].position.x * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[1]].position.y * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[1]].position.z * entities[0]->scale);
glm::vec3 tri3 = glm::vec3(entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[2]].position.x * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[2]].position.y * entities[0]->scale, entities[0]->model.meshes[0].vertices[entities[0]->model.meshes[0].indices[2]].position.z * entities[0]->scale);
//Translate these tris by the model matrix
glm::mat4 mat(1.0f);
mat = glm::translate(mat, glm::vec3(entities[0]->xPos, entities[0]->yPos, entities[0]->zPos));
mat = glm::rotate(mat, glm::radians(entities[0]->xRot), glm::vec3(1, 0, 0));
mat = glm::rotate(mat, glm::radians(entities[0]->yRot), glm::vec3(0, 1, 0));
mat = glm::rotate(mat, glm::radians(entities[0]->zRot), glm::vec3(0, 0, 1));
mat = glm::scale(mat, glm::vec3(entities[0]->scale, entities[0]->scale, entities[0]->scale));
glm::vec4 tri11 = mat * glm::vec4(tri1.x, tri1.y, tri1.z, 1.0f);
glm::vec4 tri22 = mat * glm::vec4(tri2.x, tri2.y, tri2.z, 1.0f);
glm::vec4 tri33 = mat * glm::vec4(tri3.x, tri3.y, tri3.z, 1.0f);
if (isAABBIntersectingTriangle(entities[3]->bboxMin, entities[3]->bboxMax, glm::vec3(tri11.x, tri11.y, tri11.z), glm::vec3(tri22.x, tri22.y, tri22.z), glm::vec3(tri33.x, tri33.y, tri33.z)))
{
std::cout << "AABB Tri collision\n";
}