I followed the pseudo code for k-means clustering to write this code. This code gives different answers when initialized the clusters' centroids with different values and none of those answers are correct. Can you help me please? I tested with 15 nodes, tolerance = 0.00001 and iterations = 100000 Thanks in advance.
class kMeans:
def __init__(self, coordinates, tolerance, iter, nof):
self.grid = coordinates
self.N = coordinates.shape[0]
self.t = tolerance
self.nof = nof
self.f = None
def kMeans(self, nof):
assign = [0]*self.N
self.fac = np.empty([nof,2])
for i in range(nof):
for j in range(2):
self.fac[i,j] = self.grid[i+10,j]
for itr in range(iter):
for n in range(self.N):
distance = [0]*nof
for f in range(nof):
distance[f] = math.sqrt((self.grid[n,0]-self.fac[f,0])**2 + (self.grid[n,1]-self.fac[f,1])**2 )
assign[n] = np.argmin(distance)
for fa in range(nof):
l = []
x,y = 0,0
for asg in range(self.N):
if fa == assign[asg]:
l.append(asg)
x = np.mean(self.grid[l,0])
y = np.mean(self.grid[l,1])
if abs(x-self.fac[fa,0]) >= self.t:
self.fac[fa,0] = x
if abs(y-self.fac[fa,1]) >= self.t:
self.fac[fa,1] = y
continue
print('dist:',distance)
print('assign:',assign)
print('fac:',self.fac)
print('locate:', self.grid[l,1])
self.f = self.fac
return self.fac
'''