How to use LabelEncoder in sklearn pipeline?
NOTE The following code works for "OneHotEncoder" but fails for "LabelEncoder", How to use LabelEncoder in this circumstance?
MWE
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import make_column_transformer
import sklearn
print(sklearn.__version__) # 0.22.2.post1
df = sns.load_dataset('titanic').head()
le = OneHotEncoder() # this success
# le = LabelEncoder() # this fails
ct = make_column_transformer(
(le, ['sex','adult_male','alone']),
remainder='drop')
ct.fit_transform(df)
$$\begin{align}\mathsf P(N\mid E)&=\dfrac{\mathsf P(N\cap E)}{\mathsf P(E)}\[2ex]&=\dfrac{\mathsf P(N\cap E\mid F),\mathsf P(F)+\mathsf P(N\cap E\mid F^{\small\complement}),\mathsf P(F^{\small\complement})}{\mathsf P(E\mid F),\mathsf P(F)+\mathsf P(E\mid F^{\small\complement}),\mathsf P(F^{\small\complement})}\end{align}$$