I need to perform glm (poisson) estimations with fixed-effects (say merely unit FE) and several regressors (RHS variables). I have an unbalanced panel dataset where most (~90%) observations have missing values (NA) for some but not all regressors.
fixest::feglm()
can handle this and returns my fitted model.
However, to do so, it (and fixest::demean
too) removes observations that have at least one regressor missing, before constructing the fixed-effect means.
In my case, I am afraid this implies not using a significant share of available information in the data.
Therefore, I would like to demean my variables by hand, to be able to include as much information as possible in each fixed-effect dimension's mean, and then run feglm on the demeaned data. However, this implies getting negative dependent variable values, which is not compatible with Poisson. If I run feglm with "poisson" family and my manually demeaned data, I (coherently) get: "Negative values of the dependent variable are not allowed for the "poisson" family.". The same error is returned with data demeaned with the fixest::demean
function.
Question:
How does feglm
handle negative values of the demeaned dependent variable? Is there a way (like some data transformation) to reproduce fepois
on a fixed-effect in the formula with fepois
on demeaned data and a no fixed-effect formula?
To use the example from fixest::demean
documentation (with two-way fixed-effects):
data(trade)
base = trade
base$ln_dist = log(base$dist_km)
base$ln_euros = log(base$Euros)
# We center the two variables ln_dist and ln_euros
# on the factors Origin and Destination
X_demean = demean(X = base[, c("ln_dist", "ln_euros")],
fe = base[, c("Origin", "Destination")])
base[, c("ln_dist_dm", "ln_euros_dm")] = X_demean
and I would like to reproduce
est_fe = fepois(ln_euros ~ ln_dist | Origin + Destination, base)
with
est = fepois(ln_euros_dm ~ ln_dist_dm, base)