I've been developing an R package for single cell RNA-seq analysis, and one of the functions I used repeatedly calculates the cosine dissimilarity matrix for a given matrix of m cells by n genes. The function I wrote is as follows:
CosineDist <- function(input = NULL) {
if (is.null(input)) { stop("You forgot to provide an input matrix") }
dist_mat <- as.dist(1 - input %*% t(input) / (sqrt(rowSums(input^2) %*% t(rowSums(input^2)))))
return(dist_mat)
}
This code works fine for smaller datasets, but when I run it on anything over 20,000 rows it takes forever and then crashes my R session due to memory issues. I believe that porting this to Rcpp would make it both faster and more memory efficient (I know this is a bit of a naive belief, but my knowledge of C++ in general is limited). Finally, the output of the function, though it does not have to be a distance matrix object when returned, does need to be able to be converted to that format after its generation.
How should I got about converting this function to Rcpp and then calling it as I would any of the other functions in my package? Alternatively, is this the best way to go about solving the speed / memory problem?