How to find out the VRAM usage of this model? (Its not about the data being trained, but the model and its weights being loaded into VRAM
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,LSTM,BatchNormalization
import tensorflow as tf
model = Sequential()
model.add(LSTM(700, input_shape=(10000,5000,20), return_sequences=True))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(LSTM(700, return_sequences=True))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(LSTM(700))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(64, activation='sigmoid'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='sigmoid'))
model.add(Dropout(0.2))