I used tensorflow object detection API.
Here is my environment.
All images are from coco API
Tensorflow version : 1.13.1
Tensorboard version : 1.13.1
Number of test images : 3000
Number of train images : 24000
Pre-trained model : SSD mobilenet v2 quantized 300x300 coco
Number of detecting class : 1(person)
And here is my train_config.
train_config: {
batch_size: 6
optimizer {
adam_optimizer: {
learning_rate {
exponential_decay_learning_rate: {
initial_learning_rate:0.000035
decay_steps: 7
decay_factor: 0.98
}
}
}
}
fine_tune_checkpoint: "D:/TF/models/research/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/model.ckpt"
fine_tune_checkpoint_type: "detection"
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
I can't find optimized learning rate, appropriate decay steps and factor.
So I did many training, but the result is always similar.
How can I fix this??
I already spent a week just for this problem..
On the other post, someone recommended that add a noise to data set(images).
But I don't know what it means.
How can I make that happen?