Was able to find the solution by setting signatures for input shape and attention mask, which is the following below. This is a simple implementation that uses a fixed input shape for a saved model and requires you to pad the inputs to the expected input shape of 384. I have seen implementations of calling custom signatures and model creation to match expected input shapes, however the below simple case worked for what I was looking to accomplish with serving a huggingface model via TF Serve. If anyone has any better examples or ways to extend this functionality better, please post for future use.
# create callable
from transformers import TFDistilBertForQuestionAnswering
distilbert = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-cased-distilled-squad')
callable = tf.function(distilbert.call)
By calling get_concrete_function, we trace-compile the TensorFlow operations of the model for an input signature composed of two Tensors of shape [None, 384], the first one being the input ids and the second one the attention mask.
concrete_function = callable.get_concrete_function([tf.TensorSpec([None, 384], tf.int32, name="input_ids"), tf.TensorSpec([None, 384], tf.int32, name="attention_mask")])
save the model with the signatures:
# stored model path for TF Serve (1 = version 1) --> '/path/to/my/model/distilbert_qa/1/'
distilbert_qa_save_path = 'path_to_model'
tf.saved_model.save(distilbert, distilbert_qa_save_path, signatures=concrete_function)
check to see that it contains the correct signature:
saved_model_cli show --dir 'path_to_model' --tag_set serve --signature_def serving_default
output should look like:
The given SavedModel SignatureDef contains the following input(s):
inputs['attention_mask'] tensor_info:
dtype: DT_INT32
shape: (-1, 384)
name: serving_default_attention_mask:0
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 384)
name: serving_default_input_ids:0
The given SavedModel SignatureDef contains the following output(s):
outputs['output_0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 384)
name: StatefulPartitionedCall:0
outputs['output_1'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 384)
name: StatefulPartitionedCall:1
Method name is: tensorflow/serving/predict
TEST MODEL:
from transformers import DistilBertTokenizer
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
question, text = "Who was Benjamin?", "Benjamin was a silly dog."
input_dict = tokenizer(question, text, return_tensors='tf')
start_scores, end_scores = distilbert(input_dict)
all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1])
FOR TF SERVE (in colab): (which was my original intent with this)
!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add -
!apt update
!apt-get install tensorflow-model-server
import os
# path_to_model --> versions directory --> '/path/to/my/model/distilbert_qa/'
# actual stored model path version 1 --> '/path/to/my/model/distilbert_qa/1/'
MODEL_DIR = 'path_to_model'
os.environ["MODEL_DIR"] = os.path.abspath(MODEL_DIR)
%%bash --bg
nohup tensorflow_model_server --rest_api_port=8501 --model_name=my_model --model_base_path="${MODEL_DIR}" >server.log 2>&1
!tail server.log
MAKE A POST REQUEST:
import json
!pip install -q requests
import requests
import numpy as np
max_length = 384 # must equal model signature expected input value
question, text = "Who was Benjamin?", "Benjamin was a good boy."
# padding='max_length' pads the input to the expected input length (else incompatible shapes error)
input_dict = tokenizer(question, text, return_tensors='tf', padding='max_length', max_length=max_length)
input_ids = input_dict["input_ids"].numpy().tolist()[0]
att_mask = input_dict["attention_mask"].numpy().tolist()[0]
features = [{'input_ids': input_ids, 'attention_mask': att_mask}]
data = json.dumps({ "signature_name": "serving_default", "instances": features})
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/my_model:predict', data=data, headers=headers)
print(json_response)
predictions = json.loads(json_response.text)['predictions']
all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
answer = ' '.join(all_tokens[tf.math.argmax(predictions[0]['output_0']) : tf.math.argmax(predictions[0]['output_1'])+1])
print(answer)