I've never done things like this before, but I have done some complex cellular automata. Sorry if this is too vague.
The basic idea here is to mark all particles that should "keep falling" or "not move" and exclude them from complex processing (with a special short/fast processor for the "falling" list - all you need to do is drop each one by a pixel).
- The acceleration for non-moving particles - static particles (I'll call them S particles), is that they don't move. Mark it for all non-moving regions (like a gravity-immune "wall" or "bowl" that a user might make. Mark particles above it S if they are stable, so for example for liquid, if it has S particles under, and to both sides of itself, it will not move. For something like sand that forms piles, if it has an S in each of the three spots under it, it makes a pile, you'll get nice 45-degree piles like this, I'm sure you can change it to make some things form steeper, or less-steep piles. Do S mapping bottom-up.
- The acceleration for particles with no particle under them is falling - F particles. Particles with an F particle under them are also F particles. Mark these bottom-up as well.
- Particles unmarked F or S are complex, they may start falling, stop falling, or roll, use the slow processor, which you already have, to deal with them, there shouldn't be many.
In the end what you will have is many many fast particles. Those in a pile/lake and those raining down. The leftover particles are those on the edge of slopes, on the top of lakes, or in other complex positions. There shouldn't be nearly as many as there will be fast particles.
Visually mark each kind of particle with some colour, complex particles being bright red. Find cases where it is still slow, and see what other kinds of fast processors you should make. For example you may find that making lots of piles of sand creates lots of red areas along slopes, you may want to invest in speeding up "rolling zones" along the slopes of piles.
Hope it makes sense. Don't forget to come back and edit once you've figured something out!