let A
be:
class A {
std::vector<double> values_;
public:
A(const std::vector<double> &values) : values_(values){};
void bumpAt(std::size_t i, const double &df) {
values_[i] += df;
virtual method1();
virtual method2();
...
}
class B : public A {
overrides methods
...
}
for the sake of simplicity consider the function:
double foo(input1, input2, ..., const A &a, const B &b, inputK, ...) {
/* do complex stuff */
return ...;
}
we want to differentiate foo()
with respect to its arguments. Therefore the first order sensitivity d foo/d a
is a std::vector<double>
with size equal to a.size()
. Same reasoning goes for d foo/d b
.
A naive implementation would go as follows:
// compute d foo/d a
std::vector<double> computeDfDa(input1, input2, ..., const A &a, const B &b, inputK, ..., double da = 1.0){
std::vector<double> dfda = {};
auto aUp = a.copy();
auto aDown = a.copy();
for (auto i = 0; i < a.size(); ++i) {
// bump up
aUp.bumpAt(i, da);
// bump down
aDown.bumpAt(i, -da);
auto up = foo(input1, input2, ..., aUp, b, inputK, ...);
auto down = foo(input1, input2, ..., aDown, b, inputK, ...);
auto derivative = (up - down) / 2.0 / da;
dfda.pushback(derivative);
// revert bumps
aUp.bumpAt(i, -da);
aDown.bumpAt(i, da);
}
return dfda;
}
// compute d foo/d b
std::vector<double> computeDfDb(input1, input2, ..., const A &a, const B &b, inputK, ..., double db = 0.01){
std::vector<double> dfdb = {};
auto bUp = b.copy();
auto bDown = b.copy();
for (auto i = 0; i < a.size(); ++i) {
// bump up
bUp.bumpAt(i, db);
// bump down
bDown.bumpAt(i, -db);
auto up = foo(input1, input2, ..., a, bUp, inputK, ...);
auto down = foo(input1, input2, ..., a, bDown, inputK, ...);
auto derivative = (up - down) / 2.0 / db;
dfdb.pushback(derivative);
// revert bumps
bUp.bumpAt(i, -db);
bDown.bumpAt(i, db);
}
return dfdb;
}
This works well however we have basically the same code for computeDfDa()
and for computeDfDb()
.
Is there any design pattern that would allow to have a unique (maybe templated) function that would understand automatically which input to bump?
Please note the position of a
and b
in the inputs is not commutative.
If the complexity and the number of inputs of foo()
are much greater the naive solution would generate a lot of useless code as we'd have to write a computeDfDx()
function for every input x
of foo()
.