Should you want to speed up the process of training, more data must be provided to the model per training. In my case I was providing just 1 batch. The best way to simply solve this is using the DataLoader.
Complete Colab with the solution can be found in this link: https://colab.research.google.com/drive/1QgtshCFETZ9oTvIYWy1Bdre-614kbwRX?usp=sharing
# This is to create the Dataset
from torch.utils.data import Dataset, DataLoader
class DemandDataset(Dataset):
def __init__(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def __len__(self):
return len(self.y_train)
def __getitem__(self, idx):
data = self.X_train[idx]
labels = self.y_train[idx]
return data, labels
#This is to convert from typical RNN sequences
sq_0 =[]
y_0 =[]
for seq, y_train in train_data:
sq_0.append(seq)
y_0.append(y_train)
dataset=DemandDataset(sq_0,y_0)
dataloader = DataLoader(dataset, batch_size=20)
epochs = 30
t = 50
for i in range(epochs):
print("New epoch")
for data,label in dataloader:
optimizer.zero_grad()
model.hidden = (torch.zeros(1,1,model.hidden_size),
torch.zeros(1,1,model.hidden_size))
y_pred = model(seq)
loss = criterion(y_pred, label)
loss.backward()
optimizer.step()
print(f'Epoch: {i+1:2} Loss: {loss.item():10.8f}')
preds = train_set[-window_size:].tolist()
for f in range(t):
seq = torch.FloatTensor(preds[-window_size:])
with torch.no_grad():
model.hidden = (torch.zeros(1,1,model.hidden_size),
torch.zeros(1,1,model.hidden_size))
preds.append(model(seq).item())
loss = criterion(torch.tensor(preds[-window_size:]),y[-t:])