I'm trying to write a code to solve the n-body problem using Runge Kutta 4 integration algorithm. I'm testing the code using two bodies with masses uniformly distributed between 0 and 1, position distributed following a density law proportional to 1/r^2 and velocity distributed as Maxwell-Boltzmann distribution. I've tried to integrate the system for different tmax, but I get the orbit in the plots and I can't figure out the problem. Any help would be appreciated.
Here's the code:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef struct {
double x, y, z;
}vector;
double *masse;
vector *pos, *vel, *forza;
int main(int argc, char** argv){
double epsilon, dt, tmax,t;
double dx, dy, dz, dist, invdist, invdist3;
int N, i, l, m, n, s, j;
double a, b;
vector *k1, *k2, *k3, *k4, *w1, *w2, *w3, *w4, *pos1, *vel1;
if(argc!=5) {
fprintf(stdout,"Il programma prende in input il softening, il passo d'integrazione, il tempo massimo d'integrazione e il numero di corpi del sistema\n", argv[0]);
exit(1);
}
epsilon=strtod(argv[1],NULL);
dt=strtod(argv[2],NULL);
tmax=strtod(argv[3],NULL);
N=strtod(argv[4],NULL);
FILE* fp=fopen("Cond_ini.out", "r");
if(fp==NULL){
perror("Errore: file non trovato\n");
exit(1);
}
masse=(double*)malloc(N*sizeof(double));
pos=(vector*)malloc(N*sizeof(vector));
vel=(vector*)malloc(N*sizeof(vector));
forza=(vector*)malloc(N*sizeof(vector));
k1=(vector*)malloc(N*sizeof(vector));
k2=(vector*)malloc(N*sizeof(vector));
k3=(vector*)malloc(N*sizeof(vector));
k4=(vector*)malloc(N*sizeof(vector));
w1=(vector*)malloc(N*sizeof(vector));
w2=(vector*)malloc(N*sizeof(vector));
w3=(vector*)malloc(N*sizeof(vector));
w4=(vector*)malloc(N*sizeof(vector));
pos1=(vector*)malloc(N*sizeof(vector));
vel1=(vector*)malloc(N*sizeof(vector));
for(i=0;i<N;i++){
fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf", &masse[i], &pos[i].x, &pos[i].y, &pos[i].z, &vel[i].x, &vel[i].y, &vel[i].z);
}
fclose(fp);
printf("Condizioni iniziali:\n");
for(l=0;l<N;l++){
printf("%lf %lf %lf %lf %lf %lf %lf\n", masse[l], pos[l].x, pos[l].y, pos[l].z, vel[l].x, vel[l].y, vel[l].z);
}
for(t=0;t<tmax;t+=dt){
for(m=0;m<N;m++){
for(n=0;n<N;n++){
if(m!=n){
k1[n].x=dt*vel[n].x;
k1[n].y=dt*vel[n].y;
k1[n].z=dt*vel[n].z;
dx=pos[n].x-pos[m].x;
dy=pos[n].y-pos[m].y;
dz=pos[n].z-pos[m].z;
dist=(dx*dx)+(dy*dy)+(dz*dz)+(epsilon*epsilon);
invdist=(1/sqrt(dist));
invdist3=(invdist*invdist*invdist);
forza[n].x=dx*invdist3*masse[n];
forza[n].y=dy*invdist3*masse[n];
forza[n].z=dz*invdist3*masse[n];
w1[n].x=dt*forza[n].x;
w1[n].y=dt*forza[n].y;
w1[n].z=dt*forza[n].z;
pos1[n].x=pos[n].x+(0.5*k1[n].x);
pos1[n].y=pos[n].y+(0.5*k1[n].y);
pos1[n].z=pos[n].z+(0.5*k1[n].z);
vel1[n].x=vel[n].x+(0.5*w1[n].x);
vel1[n].y=vel[n].y+(0.5*w1[n].y);
vel1[n].z=vel[n].z+(0.5*w1[n].z);
k2[n].x=dt*(vel[n].x+(0.5*w1[n].x));
k2[n].y=dt*(vel[n].y+(0.5*w1[n].y));
k2[n].z=dt*(vel[n].z+(0.5*w1[n].z));
dx=pos1[n].x-pos[m].x;
dy=pos1[n].y-pos[m].y;
dz=pos1[n].z-pos[m].z;
dist=(dx*dx)+(dy*dy)+(dz*dz)+(epsilon*epsilon);
invdist=(1/sqrt(dist));
invdist3=(invdist*invdist*invdist);
forza[n].x=dx*invdist3*masse[n];
forza[n].y=dy*invdist3*masse[n];
forza[n].z=dz*invdist3*masse[n];
w2[n].x=dt*forza[n].x;
w2[n].y=dt*forza[n].y;
w2[n].z=dt*forza[n].z;
pos1[n].x=pos[n].x+(0.5*k2[n].x);
pos1[n].y=pos[n].y+(0.5*k2[n].y);
pos1[n].z=pos[n].z+(0.5*k2[n].z);
vel1[n].x=vel[n].x+(0.5*w2[n].x);
vel1[n].y=vel[n].y+(0.5*w2[n].y);
vel1[n].z=vel[n].z+(0.5*w2[n].z);
k3[n].x=dt*(vel[n].x+(0.5*w2[n].x));
k3[n].y=dt*(vel[n].y+(0.5*w2[n].y));
k3[n].z=dt*(vel[n].z+(0.5*w2[n].z));
dx=pos1[n].x-pos[m].x;
dy=pos1[n].y-pos[m].y;
dz=pos1[n].z-pos[m].z;
dist=(dx*dx)+(dy*dy)+(dz*dz)+(epsilon*epsilon);
invdist=(1/sqrt(dist));
invdist3=(invdist*invdist*invdist);
forza[n].x=dx*invdist3*masse[n];
forza[n].y=dy*invdist3*masse[n];
forza[n].z=dy*invdist3*masse[n];
w3[n].x=dt*forza[n].x;
w3[n].y=dt*forza[n].y;
w3[n].z=dt*forza[n].z;
pos1[n].x=pos[n].x+(k3[n].x);
pos1[n].y=pos[n].y+(k3[n].y);
pos1[n].z=pos[n].z+(k3[n].z);
vel1[n].x=vel[n].x+(w3[n].x);
vel1[n].y=vel[n].y+(w3[n].y);
vel1[n].z=vel[n].z+(w3[n].z);
k4[n].x=dt*(vel[n].x+w3[n].x);
k4[n].y=dt*(vel[n].y+w3[n].y);
k4[n].z=dt*(vel[n].z+w3[n].z);
dx=pos1[n].x-pos[m].x;
dy=pos1[n].y-pos[m].y;
dz=pos1[n].z-pos[m].z;
dist=(dx*dx)+(dy*dy)+(dz*dz)+(epsilon*epsilon);
invdist=(1/sqrt(dist));
invdist3=(invdist*invdist*invdist);
forza[n].x=dx*invdist3*masse[n];
forza[n].y=dy*invdist3*masse[n];
forza[n].z=dy*invdist3*masse[n];
w4[n].x=dt*forza[n].x;
w4[n].y=dt*forza[n].y;
w4[n].z=dt*forza[n].z;
a=k1[n].x+(2*k2[n].x)+(2*k3[n].x)+k4[n].x;
a=a/6;
pos1[n].x=pos[n].x+a;
a=k1[n].y+(2*k2[n].y)+(2*k3[n].y)+k4[n].y;
a=a/6;
pos1[n].y=pos[n].y+a;
a=k1[n].z+(2*k2[n].z)+(2*k3[n].z)+k4[n].z;
a=a/6;
pos1[n].z=pos[n].z+a;
b=w1[n].x+(2*w2[n].x)+(2*w3[n].x)+w4[n].x;
b=b/6;
vel1[n].x=vel[n].x+a;
b=w1[n].y+(2*w2[n].y)+(2*w3[n].y)+w4[n].y;
b=b/6;
vel1[n].y=vel[n].y+a;
b=w1[n].z+(2*w2[n].z)+(2*w3[n].z)+w4[n].z;
b=b/6;
vel1[n].z=vel[n].z+a;
}
}
for(j=0;j<N;j++) {
forza[j].x=0;
forza[j].y=0;
forza[j].z=0;
}
}
for(i=0;i<N;i++){
pos[i].x=pos1[i].x;
pos[i].y=pos1[i].y;
pos[i].z=pos1[i].z;
vel[i].x=vel1[i].x;
vel[i].y=vel1[i].y;
vel[i].z=vel1[i].z;
printf("%lf %lf %lf %lf %lf %lf %lf\n", t, pos[i].x, pos[i].y, pos[i].z, vel[i].x, vel[i].y, vel[i].z);
/*forza[i].x=0;
forza[i].y=0;
forza[i].z=0;*/
}
}
}
And here's a plot of orbits at different tmax: