Problem:
I am attempting to produce a plot using the function plotmeans() in the gplots package. My goals are to display mean FID sightings (see the data frame's below called 'FID' and 'Mean_FID') with associated upper and lower confidence interval bars, and n labels
Dataframe Structure
- I have a large data frame called 'FID' with 918 rows, and the main column headings are:-
- FID = number of sightings
- Year = 2015-2017
- Month = January-December
- I have modified the data frame called 'FID' to show the average sightings per month per year. The data frame is called "Mean_FID", with 36 rows and this was used to produce figure 4 (see below). The main column headings are:-
- Year = number of sightings
- Month = January-February
- Frequency FID = Mean sightings per month per year
GOAL - Desire plot
I would like to incorporate all the features listed below into one desired plot using the function plotmeans()
ci.label = I would like to display the actual upper and lower interval values at the end of each confidence interval bar.
digits = I would like all confidence interval labels to have 3 significant digits (see figure 4).
n.label = I would like to show the number of observations in each group at the bottom of each interval bar on the x-axis in the plot space (see figure 1)
Dates = all months need to be displayed in chronological order between January-December on the x-axis
Adjust y-axis = the y-axis limits are in figures 1 + 2 (see below) are incorrect because the values state the number of rows in the data frame called 'FID', rather than the actual mean number of sightings e.g. April contains 111 sightings, but the y-axis in figures 1 and 2 states there were 390 sightings, which is incorrect. Figures 3 and 4 (see below) display the correct y-axis limits.
Issues
I have so far produced 4 plots, where each plot displays at least 1 or 2 of the desired features listed above. However, I cannot produce one plot containing all the desired features. I am feeling really confused as I have modified both my R-code and data frame in an attempt to produce the desired plot. I have tried many times and I really can't understand what I am doing wrong.
If anyone can help me solve this problem, I would like to express my deepest appreciation.
Thank you :)
Summarise Data Frame
#To begin with, I tried to find the correct values for
#the mean count of observations with associated standard
#deviation, standard error, and the upper and lower confidence
#intervals using dplyr() based on Dan Chaltiel's suggestions (below):
library(dplyr)
##Count the number of row observations and count by "Year" and "Month"
Summarised_FID_Count<-FID %>%
dplyr::mutate(Month=ordered(Month, levels=month_levels)) %>%
dplyr::count(Year, Month)
##Summarise the data frame "FID'
Summarise_FID_Data<-Summarised_FID_Count %>%
group_by(Month) %>%
dplyr::summarise(mean.month = mean(n, na.rm = TRUE),
sd.month = sd(n, na.rm = TRUE),
n.month = n()) %>%
dplyr::mutate(se.month = sd.month / sqrt(n.month),
lower.ci.month = mean.month - qt(1 - (0.05 / 2), n.month - 1) * se.month,
upper.ci.month = mean.month + qt(1 - (0.05 / 2), n.month - 1) * se.month)
##One problem, the output produces negative lower
##confidence interval values which I don't think is
##correct because you cannot have a negative number of
##observations.
# A tibble: 11 x 7
Month mean.month sd.month n.month se.month lower.ci.month upper.ci.month
<ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 January 37.7 5.69 3 3.28 23.5 51.8
2 February 31.3 4.93 3 2.85 19.1 43.6
3 March 37 5.29 3 3.06 23.9 50.1
4 April 37 12.3 3 7.09 6.47 67.5
5 May 11 7.94 3 4.58 -8.72 30.7
6 July 8 1.41 2 1 -4.71 20.7
7 August 29.7 9.29 3 5.36 6.59 52.7
8 September 28.7 16.4 3 9.49 -12.2 69.5
9 October 27.3 12.5 3 7.22 -3.73 58.4
10 November 27 17.7 3 10.2 -16.9 70.9
11 December 33.7 4.04 3 2.33 23.6 43.7
R-code for figures 1, 2, 3, and 4 (see below):
##Download package
library(gplots)
#Convert `month_vector` to a factor with ordered level
Month.label<- factor(FID, order = TRUE, levels =c('January',
'February',
'March',
'April',
'May',
'June',
'July',
'August',
'September',
'October',
'November',
'December'))
##Code for figure 1
dev.new()
plotmeans(FID~Month, data=FID,
ylab="Mean Blue Whale Sightings",
xlab="Months")
##Code for sample 2
dev.new
plotmeans(FID~Month, data=FID,
ci.label = TRUE,
xaxt = n,
digits = 3,
ylab="Mean Blue Whale Sightings",
xlab="Months")
axis(side = 1, at = seq(1, 12, by = 1), labels = FALSE)
text(seq(1, 12, by=1), par("usr")[3] - 0.2, labels=unique(month.label), srt = 75, pos = 1, xpd = TRUE, cex=0.3)
##Code for sample 3:
##Filter the data frame using the function count() in dplyr
New_FID<-FID %>% dplyr::select(Month, FID) %>%
dplyr::count(Month) %>% as.data.frame
##Examine the structure of the filtered data frame showing the month and total whale sightings
str(New_FID)
##Produce a new data frame
FID_Plotmeans<-as.data.frame(New_FID)
##Rename the columns
colnames(FID_Plotmeans)<-c("Month", "FID_Sightings")
##Plot the means
dev.new()
plotmeans(FID_Sightings,
data=New_Blue_Plotmeans,
ylab="Mean Blue Whale Sightings",
xlab="Months")
##Code for sample 4:
plotmeans(Frequency_FID~Month, data=Mean_FID,
text.n.label = Month.label,
ci.label = TRUE,
digits = 3,
ylab="Mean Blue Whale Sightings",
xlab="Months")
Warning messages:
1: In arrows(x, li, x, pmax(y - gap, li), col = barcol, lwd = lwd, :
zero-length arrow is of indeterminate angle and so skipped
2: In arrows(x, ui, x, pmin(y + gap, ui), col = barcol, lwd = lwd, :
zero-length arrow is of indeterminate angle and so skipped
Problems with Figures 1, 2, 3, and 4 (see below):
Figure 1 (see below):
- Incorrect y-axis limits - the plot shows the mean number of rows in the data frame rather than the mean number of FID sightings (e.g. there are 111 sightings in April, but the y-axis limits state the mean number of sightings is 390, which is not correct.
- The months on the x-axis are not in chronological order - January-December
- Good news because the n.labels are displayed on the x-axis.
Figure 2 (see below):
- Incorrect y-axis limits - the plot shows the mean number of rows in the data frame rather than the mean number of FID sightings (e.g. there are 111 sightings in April, but the y-axis limits state the mean number of sightings is 390, which is not possible.
- The months on the x-axis are not in chronological order - January-December
- The adjoining line to connect each mean sighting per month is missing
- The ci.labels are missing
- The n.labels are missing
Figure 3 (see below):
- The months on the x-axis are not in chronological order - January-December
- The n.labels are displayed as n=1 for each grouping, which is incorrect
- The confidence interval bars are missing
- The ci.labels are missing
- Good news because the y-axis limits are correct.
Sample 4 (see below):
- The months on the x-axis are not in chronological order - January-December
- The n.labels are displayed as n=3 for each grouping, which is incorrect
- Good news, the ci.labels stating the upper and lower confidence intervals are displayed on the plot
- One of the ci.labels overlaps the n.label for the month of November, so the values are ineligible
Figure 1
Figure 2
Figure 3
Figure 4
Dataframe called 'FID'
structure(list(FID = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L,
37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L,
50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L,
63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L,
76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L,
89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L,
112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L,
123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L,
134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 144L, 145L,
146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L,
157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L,
168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L,
179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L,
190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L,
201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L, 211L,
212L, 213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 222L,
223L, 224L, 225L, 226L, 227L, 228L, 229L, 230L, 231L, 232L, 233L,
234L, 235L, 236L, 237L, 238L, 239L, 240L, 241L, 242L, 243L, 244L,
245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L, 255L,
256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L,
267L, 268L, 269L, 270L, 271L, 272L, 273L, 274L, 275L, 276L, 277L,
278L, 279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L,
289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 297L, 298L, 299L,
300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L, 308L, 309L, 310L,
311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L, 321L,
322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L, 331L, 332L,
333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L, 341L, 342L, 343L,
344L, 345L, 346L, 347L, 348L, 349L, 350L, 351L, 352L, 353L, 354L,
355L, 356L, 357L, 358L, 359L, 360L, 361L, 362L, 363L, 364L, 365L,
366L, 367L, 368L, 369L, 370L, 371L, 372L, 373L, 374L, 375L, 376L,
377L, 378L, 379L, 380L, 381L, 382L, 383L, 384L, 385L, 386L, 387L,
388L, 389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L,
399L, 400L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L, 409L,
410L, 411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L, 419L, 420L,
421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L, 429L, 430L, 431L,
432L, 433L, 434L, 435L, 436L, 437L, 438L, 439L, 440L, 441L, 442L,
443L, 444L, 445L, 446L, 447L, 448L, 449L, 450L, 451L, 452L, 453L,
454L, 455L, 456L, 457L, 458L, 459L, 460L, 461L, 462L, 463L, 464L,
465L, 466L, 467L, 468L, 469L, 470L, 471L, 472L, 473L, 474L, 475L,
476L, 477L, 478L, 479L, 480L, 481L, 482L, 483L, 484L, 485L, 486L,
487L, 488L, 489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L,
498L, 499L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L,
509L, 510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L,
520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L, 530L,
531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L, 539L, 540L, 541L,
542L, 543L, 544L, 545L, 546L, 547L, 548L, 549L, 550L, 551L, 552L,
553L, 554L, 555L, 556L, 557L, 558L, 559L, 560L, 561L, 562L, 563L,
564L, 565L, 566L, 567L, 568L, 569L, 570L, 571L, 572L, 573L, 574L,
575L, 576L, 577L, 578L, 579L, 580L, 581L, 582L, 583L, 584L, 585L,
586L, 587L, 588L, 589L, 590L, 591L, 592L, 593L, 594L, 595L, 596L,
597L, 598L, 599L, 600L, 601L, 602L, 603L, 604L, 605L, 606L, 607L,
608L, 609L, 610L, 611L, 612L, 613L, 614L, 615L, 616L, 617L, 618L,
619L, 620L, 621L, 622L, 623L, 624L, 625L, 626L, 627L, 628L, 629L,
630L, 631L, 632L, 633L, 634L, 635L, 636L, 637L, 638L, 639L, 640L,
641L, 642L, 643L, 644L, 645L, 646L, 647L, 648L, 649L, 650L, 651L,
652L, 653L, 654L, 655L, 656L, 657L, 658L, 659L, 660L, 661L, 662L,
663L, 664L, 665L, 666L, 667L, 668L, 669L, 670L, 671L, 672L, 673L,
674L, 675L, 676L, 677L, 678L, 679L, 680L, 681L, 682L, 683L, 684L,
685L, 686L, 687L, 688L, 689L, 690L, 691L, 692L, 693L, 694L, 695L,
696L, 697L, 698L, 699L, 700L, 701L, 702L, 703L, 704L, 705L, 706L,
707L, 708L, 709L, 710L, 711L, 712L, 713L, 714L, 715L, 716L, 717L,
718L, 719L, 720L, 721L, 722L, 723L, 724L, 725L, 726L, 727L, 728L,
729L, 730L, 731L, 732L, 733L, 734L, 735L, 736L, 737L, 738L, 739L,
740L, 741L, 742L, 743L, 744L, 745L, 746L, 747L, 748L, 749L, 750L,
751L, 752L, 753L, 754L, 755L, 756L, 757L, 758L, 759L, 760L, 761L,
762L, 763L, 764L, 765L, 766L, 767L, 768L, 769L, 770L, 771L, 772L,
773L, 774L, 775L, 776L, 777L, 778L, 779L, 780L, 781L, 782L, 783L,
784L, 785L, 786L, 787L, 788L, 789L, 790L, 791L, 792L, 793L, 794L,
795L, 796L, 797L, 798L, 799L, 800L, 801L, 802L, 803L, 804L, 805L,
806L, 807L, 808L, 809L, 810L, 811L, 812L, 813L, 814L, 815L, 816L,
817L, 818L, 819L, 820L, 821L, 822L, 823L, 824L, 825L, 826L, 827L,
828L, 829L, 830L, 831L, 832L, 833L, 834L, 835L, 836L, 837L, 838L,
839L, 840L, 841L, 842L, 843L, 844L, 845L, 846L, 847L, 848L, 849L,
850L, 851L, 852L, 853L, 854L, 855L, 856L, 857L, 858L, 859L, 860L,
861L, 862L, 863L, 864L, 865L, 866L, 867L, 868L, 869L, 870L, 871L,
872L, 873L, 874L, 875L, 876L, 877L, 878L, 879L, 880L, 881L, 882L,
883L, 884L, 885L, 886L, 887L, 888L, 889L, 890L, 891L, 892L, 893L,
894L, 895L, 896L, 897L, 898L, 899L, 900L, 901L, 902L, 903L, 904L,
905L, 906L, 907L, 908L, 909L, 910L, 911L, 912L, 913L, 914L, 915L,
916L, 917L, 918L), Year = c(2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L,
2017L, 2017L, 2017L), Month = structure(c(5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
8L, 8L, 8L, 8L, 8L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("April", "August",
"December", "February", "January", "July", "March", "May", "November",
"October", "September"), class = "factor")), class = "data.frame", row.names = c(NA,
-917L))
Dataframe called 'Mean FID':
structure(list(Year = c(2015, 2016, 2017, 2015, 2016, 2017, 2015,
2016, 2017, 2015, 2016, 2017, 2015, 2016, 2017, 2015, 2016, 2017,
2015, 2016, 2017, 2015, 2016, 2017, 2015, 2016, 2017, 2015, 2016,
2017, 2015, 2016, 2017, 2015, 2016, 2017), Month = structure(c(5L,
5L, 5L, 4L, 4L, 4L, 8L, 8L, 8L, 1L, 1L, 1L, 9L, 9L, 9L, 7L, 7L,
7L, 6L, 6L, 6L, 2L, 2L, 2L, 12L, 12L, 12L, 11L, 11L, 11L, 10L,
10L, 10L, 3L, 3L, 3L), .Label = c("April", "August", "December",
"February", "January", "July", "June", "March", "May", "November",
"October", "September"), class = "factor"), Frequency_FID = c(28,
23, 31, 21, 25, 28, 26, 20, 30, 29, 19, 30, 4, 7, 21, 0, 0, 0,
0, 7, 7, 16, 30, 26, 9, 29, 27, 14, 31, 22, 8, 25, 28, 24, 24,
29)), class = "data.frame", row.names = c(NA, -36L))