As stated on Elizabeth's answer, sqrt
returns a Num
type, thus it has limited precision. See Elizabeth's answer for more detail.
For that reason I created a raku class: BigRoot, which uses newton's method and FatRat
types to calculate the roots. You may use it like this:
use BigRoot;
# Can change precision level (Default precision is 30)
BigRoot.precision = 50;
my $root2 = BigRoot.newton's-sqrt: 2;
# 1.41421356237309504880168872420969807856967187537695
say $root2.WHAT;
# (FatRat)
# Can use other root numbers
say BigRoot.newton's-root: root => 3, number => 30;
# 3.10723250595385886687766242752238636285490682906742
# Numbers can be Int, Rational and Num:
say BigRoot.newton's-sqrt: 2.123;
# 1.45705181788431944566113502812562734420538186940001
# Can use other rational roots
say BigRoot.newton's-root: root => FatRat.new(2, 3), number => 30;
# 164.31676725154983403709093484024064018582340849939498
# Results are rounded:
BigRoot.precision = 8;
say BigRoot.newton's-sqrt: 2;
# 1.41421356
BigRoot.precision = 7;
say BigRoot.newton's-sqrt: 2;
# 1.4142136
In general it seems to be pretty fast (at least compared to Perl's bigfloat)
Benchmarks:
|---------------------------------------|-------------|------------|
| sqrt with 10_000 precision digits | Raku | Perl |
|---------------------------------------|-------------|------------|
| 20000000000 | 0.714 | 3.713 |
|---------------------------------------|-------------|------------|
| 200000.1234 | 1.078 | 4.269 |
|---------------------------------------|-------------|------------|
| π | 0.879 | 3.677 |
|---------------------------------------|-------------|------------|
| 123.9/12.29 | 0.871 | 9.667 |
|---------------------------------------|-------------|------------|
| 999999999999999999999999999999999 | 1.208 | 3.937 |
|---------------------------------------|-------------|------------|
| 302187301.3727 / 123.30219380928137 | 1.528 | 7.587 |
|---------------------------------------|-------------|------------|
| 2 + 999999999999 ** 10 | 2.193 | 3.616 |
|---------------------------------------|-------------|------------|
| 91200937373737999999997301.3727 / π | 1.076 | 7.419 |
|---------------------------------------|-------------|------------|
If want to implement your own sqrt
using newton's method, this the basic idea behind it:
sub newtons-sqrt(:$number, :$precision) returns FatRat {
my FatRat $error = FatRat.new: 1, 10 ** ($precision + 1);
my FatRat $guess = (sqrt $number).FatRat;
my FatRat $input = $number.FatRat;
my FatRat $diff = $input;
while $diff > $error {
my FatRat $new-guess = $guess - (($guess ** 2 - $input) / (2 * $guess));
$diff = abs($new-guess - $guess);
$guess = $new-guess;
}
return $guess.round: FatRat.new: 1, 10 ** $precision;
}