When I first read about interface BlockingQueue I read that: Producer blocks any more put() calls in a queue if it has no more space. And the opposite, it blocks method take(), if there are no items to take. I thought that it internally works same as wait() and notify(). For example, when there are no more elements to read internally wait() is called until Producer adds one more and calls notify()..or that's what we would do in 'old producer/consumer pattern. BUT IT DOESN'T WORK LIKE THAT IN BLOCKING QUEUE. How? What is the point? I am honestly surprised!
I will demonstrate:
public class Testing {
BlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<>(3);
synchronized void write() throws InterruptedException {
for (int i = 0; i < 6; i++) {
blockingQueue.put(i);
System.out.println("Added " + i);
Thread.sleep(1000);
}
}
synchronized void read() throws InterruptedException {
for (int i = 0; i < 6; i++) {
System.out.println("Took: " + blockingQueue.take());
Thread.sleep(3000);
}
}
}
class Test1 {
public static void main(String[] args) {
Testing testing = new Testing();
new Thread(new Runnable() {
@Override
public void run() {
try {
testing.write();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
try {
testing.read();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
}
}
OUTPUT:
Added 0
Added 1
Added 2
'program hangs'.
My questions is how does take() and put() BLOCK if they don't use wait() or notify() internally? Do they have some while loops that burns CPU circles fast? I am frankly confused.