I am building a model which should classify flowers. So I created a model with Tensorflow:
keras.layers.Conv2D(128, (3,3), activation='relu', input_shape=(imageShape[0], imageShape[1],3)),
keras.layers.MaxPooling2D(2,2),
keras.layers.Dropout(0.5),
keras.layers.Conv2D(256, (3,3), activation='relu'),
keras.layers.MaxPooling2D(2,2),
keras.layers.Conv2D(512, (3,3), activation='relu'),
keras.layers.MaxPooling2D(2,2),
keras.layers.Flatten(),
keras.layers.Dropout(0.3),
keras.layers.Dense(280, activation='relu'),
keras.layers.Dense(4, activation='softmax')
opt = tf.keras.optimizers.RMSprop()
model.compile(loss='categorical_crossentropy',
optimizer= opt,
metrics=['accuracy'])
While training I save checkpoints as .h5
checkpoint = ModelCheckpoint("preSaved"+str(time.time())+".h5", monitor='val_loss', verbose=1,
save_best_only=True, save_weights_only=False, mode='auto', period=1)
Now I got an epoch with a pretty low loss and want to convert it to .tflite to upload it to Firebase (use it in an Android Studio App).
import tensorflow as tf
new_model= tf.keras.models.load_model(filepath="model.h5")
tflite_converter = tf.lite.TFLiteConverter.from_keras_model(new_model)
tflite_converter.inference_type=tf.uint8
tflite_converter.default_ranges_stats=[min_value,max_value]
tflite_converter.quantized_input_stats={"conv2d_6_input_6:0"[mean,std]}
tflite_converter.post_training_quantize=True
tflite_model = tflite_converter.convert()
open("tf_lite_model.tflite", "wb").write(tflite_model)
The .h5 has about 335mb and the final .tflite got 160mb.But Firebase only allows .tflite to 60 mb and if I use a local model it needs minutes to load. I read that .tflite are usually smaller. Is there a problem in my model or when I convert it to .tflite?