Here I am trying to run CNN model on image classification.
This is the batch size and 13 labels
Image batch shape: (32, 32, 32, 3)
Label batch shape: (32, 13)
['Watch_Back' 'Watch_Chargers' 'Watch_Earpods' 'Watch_Front'
'Watch_Lifestyle' 'Watch_Others' 'Watch_Packages' 'Watch_Side'
'Watch_Text' 'Watch_Tilted' 'Watch_With_Accessories'
'Watch_With_Ear_Pods' 'Watch_With_People']
Following are the model for cnn
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=(32,32,3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(500, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(250, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
From the following part of code, error comes:
steps_per_epoch = np.ceil(train_generator.samples/train_generator.batch_size)
val_steps_per_epoch = np.ceil(valid_generator.samples/valid_generator.batch_size)
hist = model.fit(
train_generator,
epochs=10,
verbose=1,
steps_per_epoch=steps_per_epoch,
validation_data=valid_generator,
validation_steps=val_steps_per_epoch).history
Following is the error
Epoch 1/10
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-64-b89d5efc8aaf> in <module>()
7 steps_per_epoch=steps_per_epoch,
8 validation_data=valid_generator,
----> 9 validation_steps=val_steps_per_epoch).history
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: logits and labels must be broadcastable: logits_size=[32,10] labels_size=[32,13]
[[node categorical_crossentropy/softmax_cross_entropy_with_logits (defined at <ipython-input-64-b89d5efc8aaf>:9) ]] [Op:__inference_train_function_6504]
Function call stack:
train_function
How to resolve this categorical error