I have several RaggedTensors that I want to concatenate; I am using Keras. Vanilla Tensorflow will happily concatenate them, so I tried the code:
card_feature = layers.concatenate([ragged1, ragged2, ragged3])
but it gave the error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/timeroot/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py", line 925, in __call__
return self._functional_construction_call(inputs, args, kwargs,
File "/home/timeroot/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py", line 1084, in _functional_construction_call
base_layer_utils.create_keras_history(inputs)
File "/home/timeroot/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer_utils.py", line 191, in create_keras_history
_, created_layers = _create_keras_history_helper(tensors, set(), [])
File "/home/timeroot/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer_utils.py", line 222, in _create_keras_history_helper
raise ValueError('Tensorflow ops that generate ragged or sparse tensor '
ValueError: Tensorflow ops that generate ragged or sparse tensor outputs are currently not supported by Keras automatic op wrapping. Please wrap these ops in a Lambda layer:
```
weights_mult = lambda x: tf.sparse.sparse_dense_matmul(x, weights)
output = tf.keras.layers.Lambda(weights_mult)(input)
```
so then I tried:
concat_lambda = lambda xs: tf.concat(xs, axis=2)
card_feature = layers.Lambda(concat_lambda)([ragged1, ragged2, ragged3])
but it gave the exact same error, even though I had wrapped it. Is this a bug / is there a workaround?