I'm working with Keras/Tensorflow to develop an ANN that will be deployed to a low-end MCU. For this purpose, I have quantized the original ANN using the post-training quantization mechanism offered by Tensorflow Lite. If the weights are indeed quantized to int8, biases were converted from float to int32. Considering that I pretend to implement this ANN in CMSIS-NN, this is a problem as they only support int8 and int16 data.
Is it possible to configure TF Lite to also quantize biases to int8? Below follows the code I am executing:
def quantizeToInt8(representativeDataset):
# Cast the dataset to float32
data = tf.cast(representativeDataset, tf.float32)
data = tf.data.Dataset.from_tensor_slices((data)).batch(1)
# Generator function that returns one data point per iteration
def representativeDatasetGen():
for inputValue in data:
yield[inputValue]
# ANN quantization
model = tf.keras.models.load_model("C:/Users/miguel/Documents/Universidade/PhD/Code_Samples/TensorFlow/originalModel.h5")
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representativeDatasetGen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = [tf.int8]
converter.inference_type = tf.int8
converter.inference_input_type = tf.int8 # or tf.uint8
converter.inference_output_type = tf.int8 # or tf.uint8
tflite_quant_model = converter.convert()
return tflite_quant_model