Code:
a=training_dataset.map(lambda x,y: (tf.pad(x,tf.constant([[13-int(tf.shape(x)[0]),0],[0,0]])),y))
gives the following error:
TypeError: in user code:
<ipython-input-32-b25101c2110a>:1 None *
a=training_dataset.map(lambda x,y: (tf.pad(tensor=x,paddings=tf.constant([[13-int(tf.shape(x)[0]),0],[0,0]]),mode="CONSTANT"),y))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py:264 constant **
allow_broadcast=True)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py:282 _constant_impl
allow_broadcast=allow_broadcast))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_util.py:456 make_tensor_proto
_AssertCompatible(values, dtype)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_util.py:333 _AssertCompatible
raise TypeError("Expected any non-tensor type, got a tensor instead.")
TypeError: Expected any non-tensor type, got a tensor instead.
However, when I use:
a=training_dataset.map(lambda x,y: (tf.pad(x,tf.constant([[1,0],[0,0]])),y))
Above code works fine.
This brings me to the conclusion that something is wrong with: 13-tf.shape(x)[0]
but cannot understand what.
I tried converting the tf.shape(x)[0]
to int(tf.shape(x)[0])
and still got the same error.
What I want the code to do:
I have a tf.data.Dataset
object having variable length sequences of size (None,128)
where the first dimension(None) is less than 13. I want to pad the sequences such that the size of every collection is 13 i.e (13,128)
.
Is there any alternate way (if the above problem cannot be solved)?