I am trying to solve a use case of handwritten text recognition. I have used CNN and LSTM to create a network. The output of this needs to be fed to a CTC layer. I could find some codes to do this in native tensorflow. Is there an easier option for this in Keras.
model = Sequential()
model.add(Conv2D(64, kernel_size=(5,5),activation = 'relu', input_shape=(128,32,1), padding='same', data_format='channels_last'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(Conv2D(256, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1,2),padding='same'))
model.add(Conv2D(512, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(512, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1,2),padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1,1)))
model.add(Conv2D(512, kernel_size=(5,5),activation = 'relu', padding='same'))
model.add(Lambda(lambda x: x[:, :, 0, :], output_shape=(None,31,512), mask=None, arguments=None))
#model.add(Bidirectional(LSTM(256, return_sequences=True), input_shape=(31, 256)))
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Dense(75, activation = 'softmax'))
Any help on how we can easily add CTC Loss and Decode layers to this would be great