I have been trying to clustering based on the SGD model parameters (Coefficient and Intercept). coef_ holds the weights w and intercept_ holds b. How can those parameters be used with clustering (KMedoids) on a group of the learned model?
import numpy as np
from sklearn import linear_model
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
Y = np.array([1, 1, 2, 2])
clf = linear_model.SGDClassifier()
clf.fit(X, Y)
So I want to make clustering based on clf.coef_ (array([[19.47419669, 9.73709834]]))
and clf.intercept_ (array([-10.]))
for each learned model.