scipy.stats.entropy
calculates the differential entropy for a continuous random variable. By which estimation method, and which formula, exactly is it calculating differential entropy? (i.e. the differential entropy of a norm
distribution versus that of the beta
distribution)
Below is its github code. Differential entropy is the negative integral sum of the p.d.f. multiplied by the log p.d.f., but nowhere do I see this or the log written. Could it be in the call to integrate.quad
?
def _entropy(self, *args):
def integ(x):
val = self._pdf(x, *args)
return entr(val)
# upper limit is often inf, so suppress warnings when integrating
_a, _b = self._get_support(*args)
with np.errstate(over='ignore'):
h = integrate.quad(integ, _a, _b)[0]
if not np.isnan(h):
return h
else:
# try with different limits if integration problems
low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
if np.isinf(_b):
upper = upp
else:
upper = _b
if np.isinf(_a):
lower = low
else:
lower = _a
return integrate.quad(integ, lower, upper)[0]
Source (lines 2501 - 2524): https://github.com/scipy/scipy/blob/master/scipy/stats/_distn_infrastructure.py