I'm having a bit of trouble trying to get my code to work
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
import csv
from sklearn.model_selection import train_test_split
batch_size = 1
csv = "EmergeSync.csv"
val_csv = "EmergeSync.csv"
dataframe = pd.read_csv(csv)
#Split the data
train, test_ds = train_test_split(dataframe, train_size=0.8, test_size=0.2)
train_ds, val_ds = train_test_split(train, train_size=0.8, test_size=0.2)
#Building the model
model = keras.Sequential()
units = 7
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=units, activation='linear'))
model.add(keras.layers.Dense(units=units, activation='linear'))
model.add(keras.layers.Dense(units=units, activation='linear'))
model.compile(optimizer="adam", loss="mean_squared_error", metrics=["accuracy"])
num_epochs = 2
history = model.fit(train_ds, epochs=num_epochs, steps_per_epoch=5, batch_size=batch_size, shuffle=True, validation_data=val_ds, verbose=1)
print(history)
I get the following error:
ValueError: No gradients provided for any variable: ['sequential/dense/kernel:0', 'sequential/dense/bias:0', 'sequential/dense_1/kernel:0', 'sequential/dense_1/bias:0', 'sequential/dense_2/kernel:0', 'sequential/dense_2/bias:0'].
I have no idea what is causing this error. If anyone could help me, that would be great!