I'm writing a function that takes in an object with a trajectory (including starting position, starting velocity, and acceleration, all represented as Vector3s) in 3D space and if it hits another object, returns the point of collision and time of the collision. I'm using kinematic equations with a timestep to detect possible collisions and I can get the point of collision that way, but once I have that I want to find the exact time that that collision would occur at.I thought of rearranging a kinematic equation to solve for time and plug in what I already had, but I can't figure out how I can use all three axes of motion to do this, since my other values are Vec3's and time is just scalar. I've thought about just doing the calculation on one axis, but I'm not sure if that would lead to an accurate result.
Would it be accurate to calculate just based on one axis, or is there a way to incorporate all three into the calculation? The formula I'm using to solve for time is:
t = (v_init +/- Sqrt((v_init)^2 - (accel * disp * 4 * .5)))/accel;
Where v_init is initial velocity, disp is total displacement, and accel is acceleration. I'm basing this off of the kinematic equation:
d = v*t + .5*a*t^2