Are there equivalent of np.multiply.at in Pytorch? I have two 4d arrays and one 2d index array:
base = torch.ones((2, 3, 5, 5))
to_multiply = torch.arange(120).view(2, 3, 4, 5)
index = torch.tensor([[0, 2, 4, 2], [0, 3, 3, 2]])
As shown in this question I asked earlier (in Numpy), the row index of the index array corresponds to the 1st dimension of base and to_multiply, and the value of the index array corresponds to the 3rd dimension of base. I want to take the slice from base according to the index and multiply with to_multiply, it can be achieved in Numpy as follows:
np.multiply.at(base1, (np.arange(2)[:,None,None],np.arange(3)[:,None],index[:,None,:]), to_multiply)
However, now when I want to translate this to PyTorch, I cannot find an equivalent of np.multiply.at in Pytorch, I can only find the "index_add_" method but there is no "index_multiply". And I want to avoid doing explicit for loop.
So how can I achieve above in PyTorch? Thanks!