I've got Spark Structured Streaming application (Spark 2.4.5) which is consuming from Kafka. The application was down for a bit, but when I restarted it I get the below error.
I fully understand why I'm getting the error, and I'm ok with that. But I cannot seem to get around it. Based on the logs I see "Recovering from the earliest offset: 1234332978" but this does seem to be happening. I've tried deleting the 'source' folder in my checkpoint location which also didn't help.
My code is using a mapGroupWithState function, so I do have State data which I don't want to lose, as a result deleting the entire Checkpoint directory isn't my preferred approach. I have set:
.option("failOnDataLoss", false) .option("startingOffsets", "latest")
But it seems this only applies to new partitions.
Is there a way to tell Spark to just accept that there are missing offsets and continue? Or some approach to delete the offset data manually without impacting the application 'state'?
20/07/29 01:02:40 WARN InternalKafkaConsumer: Cannot fetch offset 1215191190 (GroupId: spark-kafka-source-f9562fca-ab0c-4f7a-93c3-20506cbcdeb7--1440771761-executor, TopicPartition: cmusstats-0).
Some data may have been lost because they are not available in Kafka any more; either the
data was aged out by Kafka or the topic may have been deleted before all the data in the
topic was processed. If you want your streaming query to fail on such cases, set the source
option "failOnDataLoss" to "true".
org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {cmusstats-0=1215191190}
at org.apache.kafka.clients.consumer.internals.Fetcher.parseCompletedFetch(Fetcher.java:970)
at org.apache.kafka.clients.consumer.internals.Fetcher.fetchedRecords(Fetcher.java:490)
at org.apache.kafka.clients.consumer.KafkaConsumer.pollForFetches(KafkaConsumer.java:1259)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1187)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1115)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.fetchData(KafkaDataConsumer.scala:470)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.org$apache$spark$sql$kafka010$InternalKafkaConsumer$$fetchRecord(KafkaDataConsumer.scala:361)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer$$anonfun$get$1.apply(KafkaDataConsumer.scala:251)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer$$anonfun$get$1.apply(KafkaDataConsumer.scala:234)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.runUninterruptiblyIfPossible(KafkaDataConsumer.scala:209)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.get(KafkaDataConsumer.scala:234)
at org.apache.spark.sql.kafka010.KafkaDataConsumer$class.get(KafkaDataConsumer.scala:64)
at org.apache.spark.sql.kafka010.KafkaDataConsumer$CachedKafkaDataConsumer.get(KafkaDataConsumer.scala:500)
at org.apache.spark.sql.kafka010.KafkaMicroBatchInputPartitionReader.next(KafkaMicroBatchReader.scala:357)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:49)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
20/07/29 01:02:40 WARN InternalKafkaConsumer: Some data may be lost. Recovering from the earliest offset: 1234332978
20/07/29 01:02:40 WARN InternalKafkaConsumer:
The current available offset range is AvailableOffsetRange(1234332978,1328165875).
Offset 1215191190 is out of range, and records in [1215191190, 1215691190) will be
skipped (GroupId: spark-kafka-source-f9562fca-ab0c-4f7a-93c3-20506cbcdeb7--1440771761-executor, TopicPartition: cmusstats-0).
Some data may have been lost because they are not available in Kafka any more; either the
data was aged out by Kafka or the topic may have been deleted before all the data in the
topic was processed. If you want your streaming query to fail on such cases, set the source
option "failOnDataLoss" to "true".