I have seen many questions of this problem online, but there are no definitive solutions and my case might be different, as it is with time series data and a LSTM architecture.
model = Sequential()
model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps, n_features)))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1, activation = 'sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy',metrics=['accuracy'])
Logs:
Train on 290 samples, validate on 190 samples
Epoch 1/4000
- 1s - loss: 0.6896 - accuracy: 0.5586 - val_loss: 0.6846 - val_accuracy: 0.6105
Epoch 2/4000
- 0s - loss: 0.6890 - accuracy: 0.5586 - val_loss: 0.6843 - val_accuracy: 0.6105
Epoch 3/4000
- 0s - loss: 0.6889 - accuracy: 0.5586 - val_loss: 0.6829 - val_accuracy: 0.6105
Epoch 4/4000
- 0s - loss: 0.6884 - accuracy: 0.5586 - val_loss: 0.6827 - val_accuracy: 0.6105
Epoch 5/4000
- 0s - loss: 0.6883 - accuracy: 0.5586 - val_loss: 0.6825 - val_accuracy: 0.6105
Epoch 6/4000
- 0s - loss: 0.6882 - accuracy: 0.5586 - val_loss: 0.6822 - val_accuracy: 0.6105
Epoch 7/4000
- 0s - loss: 0.6882 - accuracy: 0.5586 - val_loss: 0.6820 - val_accuracy: 0.6105
Epoch 8/4000
- 0s - loss: 0.6880 - accuracy: 0.5586 - val_loss: 0.6818 - val_accuracy: 0.6105
Epoch 9/4000
- 0s - loss: 0.6880 - accuracy: 0.5586 - val_loss: 0.6806 - val_accuracy: 0.6105
Epoch 10/4000
- 0s - loss: 0.6876 - accuracy: 0.5586 - val_loss: 0.6795 - val_accuracy: 0.6105